3 research outputs found

    Using RBF nets in rubber industry process control

    Get PDF
    This paper describes the use of a radial basis function (RBF) neural network. It approximates the process parameters for the extrusion of a rubber profile used in tyre production. After introducing the problem, we describe the RBF net algorithm and the modeling of the industrial problem. The algorithm shows good results even using only a few training samples. It turns out that the „curse of dimensions“ plays an important role in the model. The paper concludes by a discussion of possible systematic error influences and improvements

    Using growing RBF-nets in rubber industry process control

    Get PDF
    This paper describes the use of a Radial Basis Function (RBF) neural network in the approximation of process parameters for the extrusion of a rubber profile in tyre production. After introducing the rubber industry problem, the RBF network model and the RBF net learning algorithm are developed, which uses a growing number of RBF units to compensate the approximation error up to the desired error limit. Its performance is shown for simple analytic examples. Then the paper describes the modelling of the industrial problem. Simulations show good results, even when using only a few training samples. The paper is concluded by a discussion of possible systematic error influences, improvements and potential generalisation benefits. Keywords: Adaptive process control; Parameter estimation; RBF-nets; Rubber extrusio

    Adaptive process control in rubber industry

    Get PDF
    This paper describes the problems and an adaptive solution for process control in rubber industry. We show that the human and economical benefits of an adaptive solution for the approximation of process parameters are very attractive. The modeling of the industrial problem is done by the means of artificial neural networks. For the example of the extrusion of a rubber profile in tire production our method shows good results even using only a few training samples
    corecore