1,417 research outputs found
Hydration status and fluid balance of elite European youth soccer players during consecutive training sessions
The objective of the study was to investigate the hydration status and fluid balance of elite European youth soccer players during three consecutive training sessions. Fourteen males (age 16.9 ± 0.8 years, height 1.79 ± 0.06 m, body mass (BM) 70.6 ± 5.0 kg) had their hydration status assessed from first morning urine samples (baseline) and pre- and post-training using urine specif-ic gravity (USG) measures, and their fluid balance calculated from pre- to post-training BM change, corrected for fluid intake and urine output. Most participants were hypohydrated upon waking (USG >1.020; 77% on days 1 and 3, and 62% on day 2). There was no significant difference between first morning and pre-training USG (p = 0.11) and no influence of training session (p = 0.34) or time (pre- vs. post-training; p = 0.16) on USG. Significant BM loss occurred in sessions 1-3 (0.69 ± 0.22, 0.42 ± 0.25, and 0.38 ± 0.30 kg respectively, p < 0.05). Mean fluid intake in sessions 1-3 was 425 ± 185, 355 ± 161, and 247 ± 157 ml, respectively (p < 0.05). Participants replaced on average 71.3 ± 64.1% (range 0-363.6%) of fluid losses across the three sessions. Body mass loss, fluid intake, and USG measures showed large inter-individual variation. Elite young European soccer players likely wake and present for training hypohydrat-ed, when a USG threshold of 1.020 is applied. When training in a cool environment with ad libitum access to fluid, replacing ~71% of sweat losses results in minimal hypohydration (<1% BM). Consumption of fluid ad libitum throughout training ap-pears to prevent excessive (≥2% BM) dehydration, as advised by current fluid intake guidelines. Current fluid intake guide-lines appear applicable for elite European youth soccer players training in a cool environment
Effects of pore modification on the templating of guest molecules in a 2D honeycomb network
This work was supported by the UK Engineering Physical Sciences Research Council (EPRSC) and the EU.1,7-Diadamantanethioperylene-3,4:9,10-tetracarboxylic diimide, (Ad-S)(2)-PTCDI, adsorbed on Au (111) from solution was investigated by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). (Ad-S)(2)-PTCDI forms a well-ordered monolayer whose structure is described by a (2 root 63 x root 19) R19.1 degrees chiral unit cell containing four molecules. Codeposition of (Ad-S)(2)-PTCDI with 1,3,5-triazine-2,4,6-triamine (melamine) yields a honeycomb network whose (7 root 3 x 7 root 3)R30 degrees unit cell is identical to the unsubstituted PTCDI/melamine analogue. The effect of the adamantyl thioether moieties on the adsorption of guest molecules is investigated using adamantane thiol and C-60. While the thioether units do not affect the packing of adamantane thiol molecules a pronounced influence is seen in the case of fullerene. Pore modification involving different combinations of enantiomers of (Ad-S)(2)-PTCDI give rise to distinctly different arrangements of C-60 molecules. The diversity of patterns is further increased by the presence of unsubstituted PTCDI molecules.PostprintPeer reviewe
Recommended from our members
Validating Dose Uncertainty Estimates Produced by AUTODIRECT: An Automated Program to Evaluate Deformable Image Registration Accuracy.
Deformable image registration is a powerful tool for mapping information, such as radiation therapy dose calculations, from one computed tomography image to another. However, deformable image registration is susceptible to mapping errors. Recently, an automated deformable image registration evaluation of confidence tool was proposed to predict voxel-specific deformable image registration dose mapping errors on a patient-by-patient basis. The purpose of this work is to conduct an extensive analysis of automated deformable image registration evaluation of confidence tool to show its effectiveness in estimating dose mapping errors. The proposed format of automated deformable image registration evaluation of confidence tool utilizes 4 simulated patient deformations (3 B-spline-based deformations and 1 rigid transformation) to predict the uncertainty in a deformable image registration algorithm's performance. This workflow is validated for 2 DIR algorithms (B-spline multipass from Velocity and Plastimatch) with 1 physical and 11 virtual phantoms, which have known ground-truth deformations, and with 3 pairs of real patient lung images, which have several hundred identified landmarks. The true dose mapping error distributions closely followed the Student t distributions predicted by automated deformable image registration evaluation of confidence tool for the validation tests: on average, the automated deformable image registration evaluation of confidence tool-produced confidence levels of 50%, 68%, and 95% contained 48.8%, 66.3%, and 93.8% and 50.1%, 67.6%, and 93.8% of the actual errors from Velocity and Plastimatch, respectively. Despite the sparsity of landmark points, the observed error distribution from the 3 lung patient data sets also followed the expected error distribution. The dose error distributions from automated deformable image registration evaluation of confidence tool also demonstrate good resemblance to the true dose error distributions. Automated deformable image registration evaluation of confidence tool was also found to produce accurate confidence intervals for the dose-volume histograms of the deformed dose
Towards experimental P-systems using multivesicular liposomes
P-systems are abstract computational models inspired by the phospholipid bilayer membranes generated by biological cells. Illustrated here is a mechanism by which recursive liposome structures (multivesicular liposomes) may be experimentally produced through electroformation of dipalmitoylphosphatidylcholine (DOPC) films for use in ‘real’ P-systems. We first present the electroformation protocol and microscopic characterisation of incident liposomes towards estimating the size of computing elements, level of internal compartment recursion, fault tolerance and stability. Following, we demonstrate multiple routes towards embedding symbols, namely modification of swelling solutions, passive diffusion and microinjection. Finally, we discuss how computing devices based on P-systems can be produced and their current limitations
- …