4,378 research outputs found
A strongly convergent numerical scheme from Ensemble Kalman inversion
The Ensemble Kalman methodology in an inverse problems setting can be viewed
as an iterative scheme, which is a weakly tamed discretization scheme for a
certain stochastic differential equation (SDE). Assuming a suitable
approximation result, dynamical properties of the SDE can be rigorously pulled
back via the discrete scheme to the original Ensemble Kalman inversion.
The results of this paper make a step towards closing the gap of the missing
approximation result by proving a strong convergence result in a simplified
model of a scalar stochastic differential equation. We focus here on a toy
model with similar properties than the one arising in the context of Ensemble
Kalman filter. The proposed model can be interpreted as a single particle
filter for a linear map and thus forms the basis for further analysis. The
difficulty in the analysis arises from the formally derived limiting SDE with
non-globally Lipschitz continuous nonlinearities both in the drift and in the
diffusion. Here the standard Euler-Maruyama scheme might fail to provide a
strongly convergent numerical scheme and taming is necessary. In contrast to
the strong taming usually used, the method presented here provides a weaker
form of taming.
We present a strong convergence analysis by first proving convergence on a
domain of high probability by using a cut-off or localisation, which then
leads, combined with bounds on moments for both the SDE and the numerical
scheme, by a bootstrapping argument to strong convergence
Exploring the academic invisible web
Purpose: To provide a critical review of Bergman's 2001 study on the Deep
Web. In addition, we bring a new concept into the discussion, the Academic
Invisible Web (AIW). We define the Academic Invisible Web as consisting of all
databases and collections relevant to academia but not searchable by the
general-purpose internet search engines. Indexing this part of the Invisible
Web is central to scientific search engines. We provide an overview of
approaches followed thus far. Design/methodology/approach: Discussion of
measures and calculations, estimation based on informetric laws. Literature
review on approaches for uncovering information from the Invisible Web.
Findings: Bergman's size estimate of the Invisible Web is highly questionable.
We demonstrate some major errors in the conceptual design of the Bergman paper.
A new (raw) size estimate is given. Research limitations/implications: The
precision of our estimate is limited due to a small sample size and lack of
reliable data. Practical implications: We can show that no single library alone
will be able to index the Academic Invisible Web. We suggest collaboration to
accomplish this task. Originality/value: Provides library managers and those
interested in developing academic search engines with data on the size and
attributes of the Academic Invisible Web.Comment: 13 pages, 3 figure
Well Posedness and Convergence Analysis of the Ensemble Kalman Inversion
The ensemble Kalman inversion is widely used in practice to estimate unknown
parameters from noisy measurement data. Its low computational costs,
straightforward implementation, and non-intrusive nature makes the method
appealing in various areas of application. We present a complete analysis of
the ensemble Kalman inversion with perturbed observations for a fixed ensemble
size when applied to linear inverse problems. The well-posedness and
convergence results are based on the continuous time scaling limits of the
method. The resulting coupled system of stochastic differential equations
allows to derive estimates on the long-time behaviour and provides insights
into the convergence properties of the ensemble Kalman inversion. We view the
method as a derivative free optimization method for the least-squares misfit
functional, which opens up the perspective to use the method in various areas
of applications such as imaging, groundwater flow problems, biological problems
as well as in the context of the training of neural networks
Progressive Participation
A single seller faces a sequence of buyers with unit demand. The buyers are forward-looking and long-lived but vanish (and are replaced) at a constant rate. The arrival time and the valuation is private information of each buyer and unobservable to the seller. Any incentive-compatible mechanism has to induce truth-telling about the arrival time and the evolution of the valuation. We derive the optimal stationary mechanism, characterize its qualitative structure and derive a closed-form solution. As the arrival time is private information, the agent can choose the time at which he reports his arrival. The truth-telling constraint regarding the arrival time can be represented as an optimal stopping problem. The stopping time determines the time at which the agent decides to participate in the mechanism. The resulting value function of each agent can not be too convex and has to be continuously differentiable everywhere, reflecting the option value of delaying participation. The optimal mechanism thus induces progressive participation by each agent: he participates either immediately or at a future random time
Progressive Participation
A single seller faces a sequence of buyers with unit demand. The buyers are forward-looking and long-lived. The arrival time and the valuation is private information of each buyer. Any incentive compatible mechanism has to induce truth-telling about the arrival time and the evolution of the valuation. We derive the optimal stationary mechanism in closed form and characterize its qualitative structure. As the arrival time is private information, the buyer can choose the time at which he reports his arrival. The truth-telling constraint regarding the arrival time can be represented as an optimal stopping problem. The stopping time determines the time at which the buyer decides to participate in the mechanism. The resulting value function of each buyer cannot be too convex and must be continuously differentiable everywhere, reflecting the option value of delaying participation. The optimal mechanism thus induces progressive participation by each buyer: he participates either immediately or at a future random time
Progressive Participation
A single seller faces a sequence of buyers with unit demand. The buyers are forwardlooking and long-lived but vanish (and are replaced) at a constant rate. The arrival time and the valuation is private information of each buyer and unobservable to the seller. Any incentive compatible mechanism has to induce truth-telling about the arrival time and the evolution of the valuation. We derive the optimal stationary mechanism in closed form and characterize its qualitative structure. As the arrival time is private information, the buyer can choose the time at which he reports his arrival. The truth-telling constraint regarding the arrival time can be represented as an optimal stopping problem. The stopping time determines the time at which the buyer decides to participate in the mechanism. The resulting value function of each buyer cannot be too convex and must be continuously differentiable everywhere, reflecting the option value of delaying participation. The optimal mechanism thus induces progressive participation by each buyer: he participates either immediately or at a future random time
Dynamic Revenue Maximization: A Continuous Time Approach
We characterize the profit-maximizing mechanism for repeatedly selling a non-durable good in continuous time. The valuation of each agent is private information and changes over time. At the time of contracting every agent privately observes his initial type which influences the evolution of his valuation process. In the profit-maximizing mechanism the allocation is distorted in favor of agents with high initial types. We derive the optimal mechanism in closed form, which enables us to compare the distortion in various examples. The case where the valuation of the agents follows an arithmetic/geometric Brownian motion, Ornstein-Uhlenbeck process, or is derived from a Bayesian learning model are discussed. We show that depending on the nature of the private information and the valuation process the distortion might increase or decrease over time
- …