173 research outputs found

    Density functional theory study of Fe(II) adsorption and oxidation on goethite surfaces

    Full text link
    We study the interactions between Fe(II) aqua complexes and surfaces of goethite (alpha-FeOOH) by means of density functional theory calculations including the so-called Hubbard U correction to the exchange-correlation functional. Using a thermodynamic approach, we find that (110) and (021) surfaces in contact with aqueous solutions are almost equally stable, despite the evident needlelike shape of goethite crystals indicating substantially different reactivity of the two faces. We thus suggest that crystal anisotropy may result from different growth rates due to virtually barrierless adsorption of hydrated ions on the (021) but not on the (110) surface. No clear evidence is found for spontaneous electron transfer from an adsorbed Fe(II) hex-aqua complex to a defect-free goethite substrate. Crystal defects are thus inferred to play an important role in assisting such electron transfer processes observed in a recent experimental study. Finally, goethite surfaces are observed to enhance the partial oxidation of adsorbed aqueous Fe(II) upon reaction with molecular oxygen. We propose that this catalytic oxidation effect arises from donation of electronic charge from the bulk oxide to the oxidizing agent through shared hydroxyl ligands anchoring the Fe(II) complexes on the surface

    Subspace representations in ab initio methods for strongly correlated systems

    Full text link
    We present a generalized definition of subspace occupancy matrices in ab initio methods for strongly correlated materials, such as DFT+U and DFT+DMFT, which is appropriate to the case of nonorthogonal projector functions. By enforcing the tensorial consistency of all matrix operations, we are led to a subspace projection operator for which the occupancy matrix is tensorial and accumulates only contributions which are local to the correlated subspace at hand. For DFT+U in particular, the resulting contributions to the potential and ionic forces are automatically Hermitian, without resort to symmetrization, and localized to their corresponding correlated subspace. The tensorial invariance of the occupancies, energies and ionic forces is preserved. We illustrate the effect of this formalism in a DFT+U study using self-consistently determined projectors.Comment: 15 pages, 8 figures. This version (v2) matches that accepted for Physical Review B on 15th April 201

    Ligand Discrimination in Myoglobin from Linear-Scaling DFT+U

    Full text link
    Myoglobin modulates the binding of diatomic molecules to its heme group via hydrogen-bonding and steric interactions with neighboring residues, and is an important benchmark for computational studies of biomolecules. We have performed calculations on the heme binding site and a significant proportion of the protein environment (more than 1000 atoms) using linear-scaling density functional theory and the DFT+U method to correct for self-interaction errors associated with localized 3d states. We confirm both the hydrogen-bonding nature of the discrimination effect (3.6 kcal/mol) and assumptions that the relative strain energy stored in the protein is low (less than 1 kcal/mol). Our calculations significantly widen the scope for tackling problems in drug design and enzymology, especially in cases where electron localization, allostery or long-ranged polarization influence ligand binding and reaction.Comment: 15 pages, 3 figures. Supplementary material 8 pages, 3 figures. This version matches that accepted for J. Phys. Chem. Lett. on 10th May 201

    Generalized Wannier functions: a comparison of molecular electric dipole polarizabilities

    Full text link
    Localized Wannier functions provide an efficient and intuitive means by which to compute dielectric properties from first principles. They are most commonly constructed in a post-processing step, following total-energy minimization. Nonorthogonal generalized Wannier functions (NGWFs) [Skylaris et al., Phys. Rev. B 66, 035119 11 (2002); Skylaris et al., J. Chem. Phys. 122, 084119 (2005)] may also be optimized in situ, in the process of solving for the ground-state density. We explore the relationship between NGWFs and orthonormal, maximally localized Wannier functions (MLWFs) [Marzari and Vanderbilt, Phys. Rev. B 56, 12847 (1997); Souza, Marzari, and Vanderbilt, ibid. 65, 035109 (2001)], demonstrating that NGWFs may be used to compute electric dipole polarizabilities efficiently, with no necessity for post-processing optimization, and with an accuracy comparable to MLWFs.Comment: 5 pages, 1 figure. This version matches that accepted for Physical Review B on 4th May 201

    Renormalization of myoglobin-ligand binding energetics by quantum many-body effects

    Get PDF
    We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently available, namely a linear-scaling density functional theory (DFT) approach wherein the treatment of localized iron 3d electrons is further refined using dynamical mean-field theory (DMFT). This combination of methods explicitly accounts for dynamical and multi-reference quantum physics, such as valence and spin fluctuations, of the 3d electrons, whilst treating a significant proportion of the protein (more than 1000 atoms) with density functional theory. The computed electronic structure of the myoglobin complexes and the nature of the Fe-O2 bonding are validated against experimental spectroscopic observables. We elucidate and solve a long standing problem related to the quantum-mechanical description of the respiration process, namely that DFT calculations predict a strong imbalance between O2 and CO binding, favoring the latter to an unphysically large extent. We show that the explicit inclusion of many body-effects induced by the Hund's coupling mechanism results in the correct prediction of similar binding energies for oxy- and carbonmonoxymyoglobin.Comment: 7 pages, 5 figures. Accepted for publication in the Proceedings of the National Academy of Sciences of the United States of America (2014). For the published article see http://www.pnas.org/content/early/2014/04/09/1322966111.abstrac

    Tracing potential energy surfaces of electronic excitations via their transition origins: application to Oxirane

    Get PDF
    We show that the transition origins of electronic excitations identified by quantified natural transition orbital (QNTO) analysis can be employed to connect potential energy surfaces (PESs) according to their character across a widerange of molecular geometries. This is achieved by locating the switching of transition origins of adiabatic potential surfaces as the geometry changes. The transition vectors for analysing transition origins are provided by linear response time-dependent density functional theory (TDDFT) calculations under the Tamm-Dancoff approximation. We study the photochemical CO ring opening of oxirane as an example and show that the results corroborate the traditional Gomer-Noyes mechanism derived experimentally. The knowledge of specific states for the reaction also agrees well with that given by previous theoretical work using TDDFT surface-hopping dynamics that was validated by high-quality quantum Monte Carlo calculations. We also show that QNTO can be useful for considerably larger and more complex systems: by projecting the excitations to those of a reference oxirane molecule, the approach is able to identify and analyse specific excitations of a trans-2,3-diphenyloxirane molecule.Comment: 14 pages, 12 figure

    Projector self-consistent DFT+U using non-orthogonal generalized Wannier functions

    Get PDF
    We present a formulation of the density-functional theory + Hubbard model (DFT+U) method that is self-consistent over the choice of Hubbard projectors used to define the correlated subspaces. In order to overcome the arbitrariness in this choice, we propose the use of non-orthogonal generalized Wannier functions (NGWFs) as projectors for the DFT+U correction. We iteratively refine these NGWF projectors and, hence, the DFT+U functional, such that the correlated subspaces are fully self-consistent with the DFT+U ground-state. We discuss the convergence characteristics of this algorithm and compare ground-state properties thus computed with those calculated using hydrogenic projectors. Our approach is implemented within, but not restricted to, a linear-scaling DFT framework, opening the path to DFT+U calculations on systems of unprecedented size.Comment: 4 pages, 3 figures. This version (v2) matches that accepted for Physical Review B Rapid Communications on 26th July 201

    Linear-scaling DFT+U with full local orbital optimization

    Get PDF
    We present an approach to the DFT+U method (Density Functional Theory + Hubbard model) within which the computational effort for calculation of ground state energies and forces scales linearly with system size. We employ a formulation of the Hubbard model using nonorthogonal projector functions to define the localized subspaces, and apply it to a local-orbital DFT method including in situ orbital optimization. The resulting approach thus combines linear-scaling and systematic variational convergence. We demonstrate the scaling of the method by applying it to nickel oxide nano-clusters with sizes exceeding 7,000 atoms.Comment: 10 pages, 4 figures. This version (v3) matches that accepted for Physical Review B on 30th January 201

    Development of a Classical Force Field for the Oxidised Si Surface: Application to Hydrophilic Wafer Bonding

    Full text link
    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidised Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO2 polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress and interactions with single water molecules of a natively oxidised Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidised and amorphous silica surfaces of 97 mJ/m2 and 90mJ/m2, respectively, at a water adsorption coverage of approximately 1 monolayer. The difference arises from the stronger interaction of the natively oxidised surface with liquid water, resulting in a higher heat of immersion (203 mJ/m2 vs. 166 mJ/m2), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller density with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account

    Stress Development and Impurity Segregation during Oxidation of the Si(100) Surface

    Full text link
    We have studied the segregation of P and B impurities during oxidation of the Si(100) surface by means of combined static and dynamical first-principles simulations based on density functional theory. In the bare surface, dopants segregate to chemically stable surface sites or to locally compressed subsurface sites. Surface oxidation is accompanied by development of tensile surface stress up to 2.9 N/m at a coverage of 1.5 monolayers of oxygen and by formation of oxidised Si species with charges increasing approximately linearly with the number of neighbouring oxygen atoms. Substitutional P and B defects are energetically unstable within the native oxide layer, and are preferentially located at or beneath the Si/SiOx interface. Consistently, first-principles molecular dynamics simulations of native oxide formation on doped surfaces reveal that dopants avoid the formation of P-O and B-O bonds, suggesting a surface oxidation mechanism whereby impurities remain trapped at the Si/SiOx interface. This seems to preclude a direct influence of impurities on the surface electrostatics and, hence, on the interactions with an external environment
    • …
    corecore