2 research outputs found
Tuning Lewis Acidity of Metal–Organic Frameworks via Perfluorination of Bridging Ligands: Spectroscopic, Theoretical, and Catalytic Studies
The Lewis acidity of metal–organic
frameworks (MOFs) has
attracted much research interest in recent years. We report here the
development of two quantitative methods for determining the Lewis
acidity of MOFsî—¸based on electron paramagnetic resonance (EPR)
spectroscopy of MOF-bound superoxide (O<sub>2</sub><sup>•–</sup>) and fluorescence spectroscopy of MOF-bound <i>N</i>-methylacridone
(NMA)î—¸and a simple strategy that significantly enhances MOF
Lewis acidity through ligand perfluorination. Two new perfluorinated
MOFs, Zr<sub>6</sub>-fBDC and Zr<sub>6</sub>-fBPDC, where H<sub>2</sub>fBDC is 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid and H<sub>2</sub>fBPDC is 2,2′,3,3′,5,5′,6,6′-octafluoro-4,4′-biphenyldicarboxylic
acid, were shown to be significantly more Lewis acidic than nonsubstituted
UiO-66 and UiO-67 as well as the nitrated MOFs Zr<sub>6</sub>-BDC-NO<sub>2</sub> and Zr<sub>6</sub>-BPDC-(NO<sub>2</sub>)<sub>2</sub>. Zr<sub>6</sub>-fBDC was shown to be a highly active single-site solid Lewis
acid catalyst for Diels–Alder and arene C–H iodination
reactions. Thus, this work establishes the important role of ligand
perfluorination in enhancing MOF Lewis acidity and the potential of
designing highly Lewis acidic MOFs for fine chemical synthesis
Tuning Lewis Acidity of Metal–Organic Frameworks via Perfluorination of Bridging Ligands: Spectroscopic, Theoretical, and Catalytic Studies
The Lewis acidity of metal–organic
frameworks (MOFs) has
attracted much research interest in recent years. We report here the
development of two quantitative methods for determining the Lewis
acidity of MOFsî—¸based on electron paramagnetic resonance (EPR)
spectroscopy of MOF-bound superoxide (O<sub>2</sub><sup>•–</sup>) and fluorescence spectroscopy of MOF-bound <i>N</i>-methylacridone
(NMA)î—¸and a simple strategy that significantly enhances MOF
Lewis acidity through ligand perfluorination. Two new perfluorinated
MOFs, Zr<sub>6</sub>-fBDC and Zr<sub>6</sub>-fBPDC, where H<sub>2</sub>fBDC is 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid and H<sub>2</sub>fBPDC is 2,2′,3,3′,5,5′,6,6′-octafluoro-4,4′-biphenyldicarboxylic
acid, were shown to be significantly more Lewis acidic than nonsubstituted
UiO-66 and UiO-67 as well as the nitrated MOFs Zr<sub>6</sub>-BDC-NO<sub>2</sub> and Zr<sub>6</sub>-BPDC-(NO<sub>2</sub>)<sub>2</sub>. Zr<sub>6</sub>-fBDC was shown to be a highly active single-site solid Lewis
acid catalyst for Diels–Alder and arene C–H iodination
reactions. Thus, this work establishes the important role of ligand
perfluorination in enhancing MOF Lewis acidity and the potential of
designing highly Lewis acidic MOFs for fine chemical synthesis