475 research outputs found
RESERVOIR SCALE IMPLICATION OF MICROBIAL COAL-TO-METHANE CONVERSION
Increased world-wide interest in reducing the carbon-footprint of human activities has driven the coal-fueled energy industry to transition to a natural gas fueled future. Coupled with the continually increasing energy demand, the interest in alternate sources of natural gas has gained momentum. Microbially enhanced coalbed methane (MECBM), which aims at microbially converting in situ coal to methane provides one such alternate source of natural gas. Feasibility of MECBM as a viable technology is two-pronged, focusing on associated microbiology, and flow-governing reservoir response. The general advance of research in this area has thus far been from a microbial perspective, where coal-to-methane bioconversion has been successfully reported for several coal types worldwide. However, insights into reservoir properties governing flow and transport of fluids in a MECBM reservoir is missing. Given that coal is both the source and reservoir rock of the produced biogenic methane, a sound knowledge of the effect of bioconversion on flow governing properties of coal is decisive from a production perspective. Evaluating the flow governing reservoir response of a MECBM reservoir is the focus of the work presented in this dissertation. In order to investigate the effect of bioconversion on the Darcian flow regime existing in the natural fractures in coal, two experimental studies were undertaken. First, variation in coal’s flow governing micro- and macro- porosity was investigated using high-resolution scanning electron microscopy. The observed changes were quantified and the expected change in permeability of coal post-bioconversion was estimated. In the second set of experiments, the sorption-induced-strain response of coal pre- and post-bioconversion was studies. Finally, the experimental data was used to model and predict the geomechanical-coupled flow behavior of a MECBM reservoir during bioconversion and production of the produced biogenic methane. Experimental results from the imaging study revealed that bioconversion results in swelling of the coal matrix. This reduces the cleat (macroporous fracture) aperture post-bioconversion, reducing the permeability of the coal significantly. This validated the recently reported results, where measured permeability of coal packs and coal cores dropped by ~70% post-bioconversion. Bioconversion, however, resulted in increase in the cleat width of fractures greater than 5 microns wide, which constituted \u3c5% of the fractures imaged. This is indicative of the possibility of enhanced reservoir performance in artificially fractured coal formations or, ones with wide-aperture fractures, like depleted coalbed methane (CBM) reservoirs and abandoned mines. Investigation into the sorption-induced-strain response of coal revealed suppression of the strain response post-bioconversion. Results from helium and methane flooding revealed that bioconversion softens the coal matrix, reducing the Langmuir pressure and strain constants post-bioconversion. The modeling exercise revealed that the depletion induced the permeability increase commonly associated with producing CBM will be suppressed post-bioconversion. Detailed analysis of the behavioral variation in multiple reservoir parameters was used to define the ideal condition, beyond which the reservoir flow during biogenic methane production improved. Additionally, a rating system is proposed, which can be used to rank coal deposits to rate their suitability for bioconversion from a flow perspective
HIGH PERFORMANCE COMPUTING AND PROCESS CONTROL OF ADDITIVE LAYER MANUFACTURING METHODS FOR POLYMER PRODUCT METAL TOOLS PRODUCTION
Purpose of the study: Additive layer manufacturing is basically different from the traditional formative manufacturing process where a complete structure can be constructed into designed shape from layer to layer manufacturing rather than other methods or casting, forming or other machining processes. Additive layer manufacturing is a highly versatile, flexible, and customizable.
Methodology: In this paper, we discussed high-performance computing and process control of AM methods by using different parameters. The significant interest in making complex, innovative and robust products by using AM methods to great extent to deal with work is needed in AM challenges relevant to key enabling technologies namely different materials and metrology to achieve functionally and reproductive ways.
Main Findings: In this paper, we discussed major processes that highly accurate and the key applications, challenges and recent developments of future additive Am processes.
Applications of this study: Additive layer manufacturing methods to develop the most highly and controlled methods for producing a variety of complex shapes and structures. The significant role of AM layer technology is to make produce the most economical and highly effective methods. In this study, we compared different AM methods for achieving the most highly and controlled methods of AM technology.
Novelty/Originality of this study: Today manufacturing trends are very highly impacted by technologies globalizations. Various manufactures are using layer manufacturing into their best practices so that they can be changes in the global economy and manufacturing
SCIENTIFIC AND TECHNOLOGICAL CHALLENGES OF LAYER MANUFACTURING PROCESSES FOR POLYMER COMPONENTS PRODUCTION
Purpose of study: Additive manufacturing processes taking the basic information form computer-aided design (CAD) file to convert into the stereolithography (STL) data file. Today additive layer manufacturing processes are playing a very vital role in manufacturing parts with high rate of effectiveness and accuracy. CAD software is approximated to sliced containing information of each layer by layer that is printed. The main purpose of the study is to discuss the scientific and technological challenges of additive layer manufacturing processes for making polymer components production through various technological parameters and problem-solving techniques of layer manufacturing processes.
Main findings: Additive layer manufacturing is simply another name for 3D printing or rapid prototyping. As 3D printing has evolved as a technology, it has moved beyond prototyping and into the manufacturing space, with small runs of finished components now being produced by 3D printing machines around the world. Additive layer manufacturing (ALM) is the opposite of subtractive manufacturing, in which material is removed to reach the desired shape
Methodology Used: The continuous and increasing growth of additive layer manufacturing processes to discuss with different experimental behavior through simulations and graphical representations. In ALM, 3D parts are built up in successive layers of material under computer control. In its early days, 3D printing was used mainly for rapid prototyping, but it is now frequently used to make finished parts the automotive and aerospace sectors, amongst many others.
The originality of study: At the present time, the technologies of additive manufacturing are not just using for making models with the plastics but using polymer materials. It is possible to make finished products developed with high accuracy and save a lot of time and there is the possibility of testing more models
Improved Black-Box Constructions of Composable Secure Computation
We close the gap between black-box and non-black-box constructions of secure multiparty computation in the plain model under the assumption of semi-honest oblivious transfer. The notion of protocol composition we target is security, or more precisely, security with super-polynomial helpers. In this notion, both the simulator and the adversary are given access to an oracle called an that can perform some predefined super-polynomial time task. Angel-based security maintains the attractive properties of the universal composition framework while providing meaningful security guarantees in complex environments without having to trust anyone.
Angel-based security can be achieved using non-black-box constructions in rounds where is the round-complexity of the semi-honest oblivious transfer. However, currently, the best known constructions under the same assumption require rounds. If is a constant, the gap between non-black-box and black-box constructions can be a multiplicative factor . We close this gap by presenting a -round black-box construction. We achieve this result by constructing constant-round 1-1 CCA-secure commitments assuming only black-box access to one-way functions
Changes in properties of coal as a result of continued bioconversion
Microbial actions on coal have long been identified as a source of methane in coalbeds. Andrew Scott (1995) was the first to propose imitating the natural process of biogenic gasification, possibly leading to recharging coalbed methane (CBM) reservoirs, or setting up natural gas reservoirs in non-producing coalbeds. This study was aimed at identifying the changes in coal properties that affect gas deliverability in coal-gas reservoirs, when treated with microbial consortia to generate/enhance gas production. The experimental work tested the sorption and diffusion properties for the coal treated and, more importantly, the variation in the relevant parameters with continued bio-conversion since these are the first two phenomena in CBM production. During the first phase, single component sorption-diffusion experiments were carried out using pure methane and CO2 on virgin/baseline coals, retrieved from the Illinois basin. Coals were then treated with nutrient amended microbial consortia for different periods. Gas production was monitored at the end of thirty and sixty days of treatment, after which, sorption-diffusion experiments were repeated on treated coals, thus establishing a trend over the sixty-day period. The sorption data was characterized using Langmuir pressure and volume constants, obtained by fitting it over the Langmuir isotherm. The diffusion coefficient, D, was estimated by establishing the variation trend as a function of pore pressure. The pressure parameter was considered critical since, with continued production of methane, the produced gas diffuses into the coal matrix, where it gets adsorbed with increasing pressure. During production, the pressure decreases and the process is reversed, gas diffusing out of the coal matrix and arriving at the cleat system. The results indicated an increase in the sorption capacity of coal as a result of bioconversion. This was attributed to increased pore surface areas as a result of microbial actions. However, significant hysteresis was observed during desorption of methane and was attributed to preferential desorption from sorption sites in the pathways leading to pore cavities. This is corroborated by the increased rates of diffusion, especially for methane, which exhibited rates higher than that for CO2. This contradicted the results for untreated/baseline coal, which were in agreement with previous studies. Effort was made to explain this anomaly by the non-monotonic dependence of effective diffusion coefficient on the size of the diffusing particles, where in coalbed environments, CO2 has smaller kinetic diameter than methane
ANCIENT METHODS OF RESEARCH IN AYURVEDA
Ayurveda is the Upaveda of Atharvaveda, the ancient literature which gave us the knowledge of healthier life. The absolute aim of Ayurveda is to maintain the health of a healthier person and diagnose and treat the diseased person. Ayurveda has the ability to treat many chronic diseases that are untreatable in modern medicine, it has got some very preventive and curative tools to treat the diseases, but unfortunately, due to the lack of scientific validation in various concepts, this precious gift from our ancestors is trailing. In a nutshell, Ayurveda gives human a healthy life with proven methods of medical treatment. The ancient methods of treatment are very effective and relevant in present time also. Hence, evidence-based research is highly needed for global recognition and acceptance of Ayurveda, which needs further advancements in the research methodology
A preliminary study on identifying specific risk factors of post-partum depression
Background: Pregnancy and childbirth are important events in the life of a woman and also highly vulnerable period of various physiological and psychological illnesses. Several literatures propound that 22% young Indian mothers are showing depressive symptoms after delivery. The consequence of maternal depression is adverse both for mother and development of the child. Objective of this study was to examine the social and obstetric factors contributing post-partum depression.Methods: Women, 18-35 years of age, having four days to one-year postpartum period was taken from the tertiary care hospital settings. Terminal illness, still birth delivery and comorbid psychiatric illness was excluded. Screening and diagnosis of postpartum depression done based on international classification of diseases (ICD 10) using Edinburgh post-natal depression scale (EPDS). A comparative approach by the means of descriptive statistics was implied for data analysis where mothers with depressive symptoms are experimental group and non-depressed mothers were acted as the controls.Results: Study findings indicated a statistically significant association between postpartum depression and risk factors such as occupation and average social economic class, first time delivery.Conclusions: It is a preliminary study in a restricted geographical area, not covering the neurobiological risk factors of postpartum depression. Hence, the future study will focus on the large sample size in a multi areal population for assuring the accuracy of the result
- …