95 research outputs found
Prey Vulnerability Limits Top-Down Control and Alters Reciprocal Feedbacks in a Subsidized Model Food Web
Amphibian Species’ Traits, Evolutionary History, and Environment Predict Batrachochytrium Dendrobatidis Infection Patterns, but not Extinction Risk
Quantifying Biodiversity Trade-Offs In The Face Of Widespread Renewable and Unconventional Energy Development
Protecting biodiversity in British Columbia: Recommendations for developing species at risk legislation
British Columbia has the greatest biological diversity of any province or territory in Canada. Yet increasing numbers of species in British Columbia are threatened with extinction. The current patchwork of provincial laws and regulations has not effectively prevented species declines. Recently, the Provincial Government has committed to enacting an endangered species law. Drawing upon our scientific and legal expertise, we offer recommendations for key features of endangered species legislation that build upon strengths and avoid weaknesses observed elsewhere. We recommend striking an independent Oversight Committee to provide recommendations about listing species, organize Recovery Teams, and monitor the efficacy of actions taken. Recovery Teams would evaluate and prioritize potential actions for individual species or groups of species that face common threats or live in a common area, based on best available evidence (including natural and social science and Indigenous Knowledge). Our recommendations focus on implementing an adaptive approach, with ongoing and transparent monitoring and reporting, to reduce delays between determining when a species is at risk and taking effective actions to save it. We urge lawmakers to include this strong evidentiary basis for species recovery as they tackle the scientific and socioeconomic challenges of building an effective species at risk Act
Protecting biodiversity in British Columbia: Recommendations for developing species at risk legislation
British Columbia has the greatest biological diversity of any province or territory in Canada. Yet increasing numbers of species in British Columbia are threatened with extinction. The current patchwork of provincial laws and regulations has not effectively prevented species declines. Recently, the Provincial Government has committed to enacting an endangered species law. Drawing upon our scientific and legal expertise, we offer recommendations for key features of endangered species legislation that build upon strengths and avoid weaknesses observed elsewhere. We recommend striking an independent Oversight Committee to provide recommendations about listing species, organize Recovery Teams, and monitor the efficacy of actions taken. Recovery Teams would evaluate and prioritize potential actions for individual species or groups of species that face common threats or live in a common area, based on best available evidence (including natural and social science and Indigenous Knowledge). Our recommendations focus on implementing an adaptive approach, with ongoing and transparent monitoring and reporting, to reduce delays between determining when a species is at risk and taking effective actions to save it. We urge lawmakers to include this strong evidentiary basis for species recovery as they tackle the scientific and socioeconomic challenges of building an effective species at risk Act
Neurological manifestations of COVID-19 in adults and children
Different neurological manifestations of coronavirus disease 2019 (COVID-19) in adults and children and their impact have not been well characterized. We aimed to determine the prevalence of neurological manifestations and in-hospital complications among hospitalized COVID-19 patients and ascertain differences between adults and children. We conducted a prospective multicentre observational study using the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) cohort across 1507 sites worldwide from 30 January 2020 to 25 May 2021. Analyses of neurological manifestations and neurological complications considered unadjusted prevalence estimates for predefined patient subgroups, and adjusted estimates as a function of patient age and time of hospitalization using generalized linear models.
Overall, 161 239 patients (158 267 adults; 2972 children) hospitalized with COVID-19 and assessed for neurological manifestations and complications were included. In adults and children, the most frequent neurological manifestations at admission were fatigue (adults: 37.4%; children: 20.4%), altered consciousness (20.9%; 6.8%), myalgia (16.9%; 7.6%), dysgeusia (7.4%; 1.9%), anosmia (6.0%; 2.2%) and seizure (1.1%; 5.2%). In adults, the most frequent in-hospital neurological complications were stroke (1.5%), seizure (1%) and CNS infection (0.2%). Each occurred more frequently in intensive care unit (ICU) than in non-ICU patients. In children, seizure was the only neurological complication to occur more frequently in ICU versus non-ICU (7.1% versus 2.3%, P < 0.001).
Stroke prevalence increased with increasing age, while CNS infection and seizure steadily decreased with age. There was a dramatic decrease in stroke over time during the pandemic. Hypertension, chronic neurological disease and the use of extracorporeal membrane oxygenation were associated with increased risk of stroke. Altered consciousness was associated with CNS infection, seizure and stroke. All in-hospital neurological complications were associated with increased odds of death. The likelihood of death rose with increasing age, especially after 25 years of age.
In conclusion, adults and children have different neurological manifestations and in-hospital complications associated with COVID-19. Stroke risk increased with increasing age, while CNS infection and seizure risk decreased with age
Impacts of Run-of-river Hydropower on Coho Salmon (Oncorhynchus Kisutch): The Role of Density-dependent Survival
Impacts of run‐of‐river hydropower on coho salmon (Oncorhynchus kisutch): the role of density‐dependent survival
Abstract Predicting whether anthropogenic sources of mortality have negative consequences at the level of population dynamics is challenged by mechanisms like density‐dependent survival that can amplify or offset the loss of individuals from anthropogenic disturbances. Run‐of‐river (RoR) hydropower is a growing industry that can cause frequent mortality of salmonid fry through rapid reductions in streamflow, leading to stranding on dewatered shores. However, whether individual‐level impacts reduce population growth rates or increase local extinction risk is difficult to predict. We used a stochastic stage‐structured matrix model to evaluate how the timing and magnitude of anthropogenic flow fluctuations impacted population abundance and extinction risk of coho salmon (Oncorhynchus kisutch), which spend up to 1.5 yr in many streams regulated by RoR hydropower. We additionally assessed how the timing (spring, winter) and strength (weak, moderate, high) of natural density‐dependent bottlenecks experienced by salmon in freshwaters tempers or amplifies the potential for RoR‐induced mortality to scale to emergent population dynamics. We compared population sizes and the 45‐yr probability of quasi‐extinction under 12 scenarios that varied the frequency (0–20 events per year) and magnitude (1–10% mortality per event) of RoR‐induced flow fluctuations, as well as the timing and strength of density‐dependent bottlenecks occurring during the first year in freshwater. We found that even mild flow fluctuations by RoR hydropower can impact coho salmon population dynamics, especially if density dependence is weak or occurs early in freshwater residency (spring). When density dependence was strong and during winter, the potential for population‐level impact was lessened, but populations still declined by 13–42% when RoR‐induced mortality was severe (5–10%) or frequent (10–20 events/yr). We conclude that strong density‐dependent survival bottlenecks could partially mitigate the loss of fry from anthropogenic flow fluctuations, especially if bottlenecks occur late in freshwater residency, but not for all intensities of flow fluctuations. Even with strong density dependence in winter, our models predict declining populations by up to 70% under strong and very frequent flow fluctuations, which should serve to caution those tasked with regulating flows in streams affected by RoR hydropower
- …
