97 research outputs found

    Quantum computation with abelian anyons on the honeycomb lattice

    Get PDF
    We consider a two-dimensional spin system that exhibits abelian anyonic excitations. Manipulations of these excitations enable the construction of a quantum computational model. While the one-qubit gates are performed dynamically the model offers the advantage of having a two-qubit gate that is of topological nature. The transport and braiding of anyons on the lattice can be performed adiabatically enjoying the robust characteristics of geometrical evolutions. The same control procedures can be used when dealing with non-abelian anyons. A possible implementation of the manipulations with optical lattices is developed.Comment: 4 pages, 3 figures, REVTEX, improved presentation and implementatio

    Detecting Majorana bound states

    Full text link
    We propose a set of interferometric methods on how to detect Majorana bound states induced by a topological insulator. The existence of these states can be easily determined by the conductance oscillations as function of magnetic flux and/or electric voltage. We study the system in the presence and absence of Majorana bound states and observe strikingly different behaviors. Importantly, we show that the presence of coupled Majorana bound states can induce a persistent current in absence of any external magnetic field.Comment: 7 pages, 6 figures, 1 table, revised and expanded, accepted for publication in Phys. Rev.

    Effective three-body interactions in triangular optical lattices

    Full text link
    We demonstrate that a triangular optical lattice of two atomic species, bosonic or fermionic, can be employed to generate a variety of novel spin-1/2 Hamiltonians. These include effective three-spin interactions resulting from the possibility of atoms tunneling along two different paths. Such interactions can be employed to simulate particular one or two dimensional physical systems with ground states that possess a rich structure and undergo a variety of quantum phase transitions. In addition, tunneling can be activated by employing Raman transitions, thus creating an effective Hamiltonian that does not preserve the number of atoms of each species. In the presence of external electromagnetic fields, resulting in complex tunneling couplings, we obtain effective Hamiltonians that break chiral symmetry. The ground states of these Hamiltonians can be used for the physical implementation of geometrical or topological objects.Comment: 10 pages, 5 figures, REVTEX. Experimental implementation elaborated, brief study of ground states give

    Why should anyone care about computing with anyons?

    Full text link
    In this article we present a pedagogical introduction of the main ideas and recent advances in the area of topological quantum computation. We give an overview of the concept of anyons and their exotic statistics, present various models that exhibit topological behavior, and we establish their relation to quantum computation. Possible directions for the physical realization of topological systems and the detection of anyonic behavior are elaborated.Comment: 22 pages, 13 figures. Some changes to existing sections, several references added, and a new section on criteria for TQO and TQC in lattice system

    Multipartite purification protocols: upper and optimal bounds

    Full text link
    A method for producing an upper bound for all multipartite purification protocols is devised, based on knowing the optimal protocol for purifying bipartite states. When applied to a range of noise models, both local and correlated, the optimality of certain protocols can be demonstrated for a variety of graph and valence bond states.Comment: 15 pages, 16 figures. v3: published versio
    corecore