2,710 research outputs found

    Anisotropic dielectric function in polar nano-regions of relaxor ferroelectrics

    Get PDF
    The paper suggests to treat the infrared reflectivity spectra of single crystal perovskite relaxors as fine-grained ferroelectric ceramics: locally frozen polarization makes the dielectric function strongly anisotropic in the phonon frequency range and the random orientation of the polarization at nano-scopic scale requires to take into account the inhomogeneous depolarization field. Employing a simple effective medium approximation (Bruggeman symmetrical formula) to dielectric function describing the polar optic modes as damped harmonic oscillators turns out to be sufficient for reproducing all principal features of room temperature reflectivity of PMN. One of the reflectivity bands is identified as a geometrical resonance entirely related to the nanoscale polarization inhomogeneity. The approach provides a general guide for systematic determination of the polar mode frequencies split by the inhomogeneous polarization at nanometer scale.Comment: 5 pages, 2 figure

    Construction and Test of MDT Chambers for the ATLAS Muon Spectrometer

    Full text link
    The Monitored Drift Tube (MDT) chambers for the muon spectrometer of the AT- LAS detector at the Large Hadron Collider (LHC) consist of 3-4 layers of pressurized drift tubes on either side of a space frame carrying an optical monitoring system to correct for deformations. The full-scale prototype of a large MDT chamber has been constructed with methods suitable for large-scale production. X-ray measurements at CERN showed a positioning accuracy of the sense wires in the chamber of better than the required 20 ?microns (rms). The performance of the chamber was studied in a muon beam at CERN. Chamber production for ATLAS now has started

    Fault behavior under periodic dynamic disturbances

    Get PDF

    Construction and Test of the Precision Drift Chambers for the ATLAS Muon Spectrometer

    Full text link
    The Monitored Drift Tube (MDT) chambers for the muon spectrometer of the ATLAS detector at the Large Hadron Collider (LHC) consist of 3-4 layers of pressurised drift tubes on either side of a space frame carrying an optical deformation monitoring system. The chambers have to provide a track position resolution of 40 microns with a single-tube resolution of at least 80 microns and a sense wire positioning accu- racy of 20 ?microns (rms). The feasibility was demonstrated with the full-scale prototype of one of the largest MDT chambers with 432 drift tubes of 3.8 m length. For the ATLAS muon spectrometer, 88 chambers of this type have to be built. The first chamber has been completed with a wire positioning accuracy of 14 microns (rms)

    Validation of Kalman Filter alignment algorithm with cosmic-ray data using a CMS silicon strip tracker endcap

    Full text link
    A Kalman Filter alignment algorithm has been applied to cosmic-ray data. We discuss the alignment algorithm and an experiment-independent implementation including outlier rejection and treatment of weakly determined parameters. Using this implementation, the algorithm has been applied to data recorded with one CMS silicon tracker endcap. Results are compared to both photogrammetry measurements and data obtained from a dedicated hardware alignment system, and good agreement is observed.Comment: 11 pages, 8 figures. CMS NOTE-2010/00

    The Highly Damped Quasinormal Modes of dd-dimensional Reissner-Nordstrom Black Holes in the Small Charge Limit

    Full text link
    We analyze in detail the highly damped quasinormal modes of dd-dimensional Reissner-Nordstro¨\ddot{\rm{o}}m black holes with small charge, paying particular attention to the large but finite damping limit in which the Schwarzschild results should be valid. In the infinite damping limit, we confirm using different methods the results obtained previously in the literature for higher dimensional Reissner-Nordstro¨\ddot{\rm{o}}m black holes. Using a combination of analytic and numerical techniques we also calculate the transition of the real part of the quasinormal mode frequency from the Reissner-Nordstro¨\ddot{\rm{o}}m value for very large damping to the Schwarzschild value of ln(3)Tbh\ln(3) T_{bh} for intermediate damping. The real frequency does not interpolate smoothly between the two values. Instead there is a critical value of the damping at which the topology of the Stokes/anti-Stokes lines change, and the real part of the quasinormal mode frequency dips to zero.Comment: 18 pages, 8 figure

    The Optical Alignment System of the ATLAS Muon Spectrometer Endcaps

    Get PDF
    The muon spectrometer of the ATLAS detector at the Large Hadron Collider (LHC) at CERN consists of over a thousand muon precision chambers, arranged in three concentrical cylinders in the barrel region, and in four wheels in each of the two endcaps. The endcap wheels are located between 7m and 22m from the interaction point, and have diameters between 13m and 24m. Muon chambers are equipped with a complex on-line optical alignment system to monitor their positions and deformations during ATLAS data-taking. We describe the layout of the endcap part of the alignment system and the design and calibration of the optical sensors, as well as the various software components. About 1% of the system has been subjected to performance tests in the H8 beam line at CERN, and results of these tests are discussed. The installation and commissioning of the full system in the ATLAS cavern is well underway, and results from approximately half of the system indicate that we will reach the ambitious goal of a 40mu alignment accuracy, required for reconstructing final-state muons at the highest expected energies

    Relativistic Quantum Information in Detectors-Field Interactions

    Full text link
    We review Unruh-DeWitt detectors and other models of detector-field interaction in a relativistic quantum field theory setting as a tool for extracting detector-detector, field-field and detector-field correlation functions of interest in quantum information science, from entanglement dynamics to quantum teleportation. We in particular highlight the contrast between the results obtained from linear perturbation theory which can be justified provided switching effects are properly accounted for, and the nonperturbative effects from available analytic expressions which incorporate the backreaction effects of the quantum field on the detector behaviour.Comment: 21 pages, 3 figures. Prepared for the special focus issue on RQ
    corecore