35 research outputs found

    The Growth of Private Property Vehicles in the UK: Causes and Conditions

    Get PDF
    The UK private indirect real estate market has seen a rapid growth in the last seven years. The gross asset value (GAV) of the private property vehicle (PPV) market has about tripled from a GAV of £22.6bn in 1998 to a GAV of £67.1 billion at the end of 2005 (OPC, 2006).  Although this trend of growing syndication of real estate is not only a UK phenomenon, the rate of growth has been significantly faster in the UK. For example the German open-ended funds have grown over the same period from €50.4bn to €85.1bn (BVI, 2006). In the US the market capitalization of equity real estate investment trusts (REIT) has grown 155% since 1999 to US$ 301bn (NAREIT, 2006). Each jurisdiction is offering different formats to invest indirectly into real estate but at the core all these vehicles are the same in that they provide a different route for investors to access real estate. In the UK, although the range of ‘products’ is now quite diverse, all structures have in common the ‘wrapping’ of property assets into a multi-investor vehicle. This paper examines the nature, pattern and process of market growth in PPVs and constructs a series of associations between causes and effects to explain this market shift. Private Property Vehicle, PPV, REIT,

    Private Property Vehicles: The Valuation of Interests in Limited Partnerships

    Get PDF
    This paper examines the extent to which the valuation of partial interests in private property vehicles should be closely aligned to the valuation of the underlying assets.    A sample of vehicle managers and investors replied to a questionnaire on the qualities of private property vehicles relative to direct property investment. Applying the Analytic Hierarchy Process (AHP) technique the relative importance of the various advantages and disadvantages of investment in private property vehicles relative to acquisition of the underlying assets are assessed.  The results suggest that the main drivers of the growth of the this sector have been the ability for certain categories of investor to acquire interests in assets that are normally inaccessible due to the amount of specific risk.  Additionally, investors have been attracted by the ability to ‘outsource’ asset management in a manner that minimises perceived agency problems.  It is concluded that deviations from NAV should be expected given that investment in private property vehicles differs from investment in the underlying assets in terms of liquidity, management structures, lot size, financial structure inter alia.  However, reliably appraising the pricing implications of these variations is likely to be extremely difficult due to the lack of secondary market trading and vehicle heterogeneity. Private Property Vehicles, PPV, Valuation

    Representative estimates of soil and ecosystem respiration in an old beech forest

    Get PDF
    Respiration has been proposed to be the main determinant of the carbon balance in European forests and is thus essential for our understanding of the carbon cycle. However, the choice of experimental design strongly affects estimates of annual respiration and of the contribution of soil respiration to total ecosystem respiration. In a detailed study of ecosystem and soil respiration fluxes in an old unmanaged deciduous forest in Central Germany over 3years (2000-2002), we combined soil chamber and eddy covariance measurements to obtain a comprehensive picture of respiration in this forest. The closed portable chambers offered to investigate spatial variability of soil respiration and its controls while the eddy covariance system offered continuous measurements of ecosystem respiration. Over the year, both fluxes were mainly correlated with temperature. However, when soil moisture sank below 23vol.% in the upper 6cm, water limitations also became apparent. The temporal resolution of the eddy covariance system revealed that relatively high respiration rates occurred during budbreak due to increased metabolic activity and after leaf fall because of increased decomposition. Spatial variability in soil respiration rates was large and correlated with fine root biomass (r 2 = 0.56) resulting in estimates of annual efflux varying across plots from 730 to 1,258 (mean 898) g C m−2 year−1. Power function calculations showed that achieving a precision in the soil respiration estimate of 20% of the full population mean at a confidence level of 95%, requires about eight sampling locations. Our results can be used as guidelines to improve the representativeness of soil respiration measurements by nested sampling designs, being applied in long-term and large-scale carbon sequestration projects such as FLUXNET and CarboEurop

    The Integrated Carbon Observation System in Europe

    Get PDF
    Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2 degrees C above preindustrial levels. Increasing levels of CO2 and other greenhouse gases (GH6s), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers' decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.Peer reviewe

    Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems : a review

    Get PDF
    Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.Peer reviewe

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    The valuation of interests in UK unlisted closed-ended property funds

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore