30 research outputs found
Ambivalence of Time
The physical nature of Time is researched. Time is considered as a set of phenomena that can be divided into two fundamentally different, but interrelated groups (time sides). The first group is connected with the metric properties and topological concepts of space-time manifold, the integral part of which is Time. This side of time integrates it with spatial dimension. The second group includes physical properties connected with spontaneous time coordinate increment of massive particles (the flow of time). It provides the variation of systems and the development of physical processes in the environment. The difference between time and space can be seen here. Thus, time ambivalence (duality) is shown. Time ambivalence is one of the key temporology principles. It is impossible to build an adequate time theory without considering it
ΠΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΊΠΎΠ½ΡΠΈΠ½ΠΈΡΠΌ ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ
We formulated the description of the Space-Time Continuum that differs from Minkowski Space-Time, and simultaneously is in one-to-one correspondence with it. The model of time motion within the frames of such continuum description was worked out. Based on that model, the concept of Temporal Velocity (Velocity of Time) was introduced, differing from the concept of time speed (motion) that is used in Special Relativity theory. The role of temporal velocity in Lorenz Transformations was disclosed. It was shown that limitation of spatial velocity of physical processes development is connected with their impossibility to surpass the temporal velocity. It was determined that the velocity of light in the vacuous space reflects the temporal velocity. Obtained results show that a series of fundamental physical correlations and constants related to velocity of light in vacuum turn out to be dependent on temporal velocity.ΠΠΎΡΡΡΠΎΠ΅Π½ΠΎ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠΈΠ½ΡΡΠΌΠ°, ΠΎΡΠ»ΠΈΡΠ°ΡΡΠ΅Π΅ΡΡ ΠΎΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°-Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΠΈΠ½ΠΊΠΎΠ²ΡΠΊΠΎΠ³ΠΎ, ΠΈ Π² ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ Π½Π°Ρ
ΠΎΠ΄ΡΡΠ΅Π΅ΡΡ Ρ Π½ΠΈΠΌ Π²ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎ-ΠΎΠ΄Π½ΠΎΠ·Π½Π°ΡΠ½ΠΎΠΌ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΊΠΎΠ½ΡΠΈΠ½ΡΡΠΌΠ°. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΡΠ΅ΠΌΠΏΠΎΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ (ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ), ΠΎΡΠ»ΠΈΡΠ½ΠΎΠ΅ ΠΎΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΠΎΠ³ΠΎ Π² ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ½ΡΡΠΈΡ ΡΠ΅ΠΌΠΏΠ° (Ρ
ΠΎΠ΄Π°) Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΡΠ²Π»Π΅Π½Π° ΡΠΎΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π² ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΡ
ΠΠΎΡΠ΅Π½ΡΠ°. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠ²ΡΠ·Π°Π½Π½ΠΎ Ρ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΡ ΠΎΠΏΠ΅ΡΠ΅ΠΆΠ΅Π½ΠΈΡ ΠΈΠΌΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ²Π΅ΡΠ° Π² ΠΏΡΡΡΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΠΎΡΡΠ°ΠΆΠ°Π΅Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ, ΡΡΠΎ ΡΡΠ΄ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΠΈ ΠΊΠΎΠ½ΡΡΠ°Π½Ρ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ ΡΠ²Π΅ΡΠ° Π² Π²Π°ΠΊΡΡΠΌΠ΅, ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΡΠΌΠΈ ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ
Π ΠΆΠΈΠ²ΡΡΠ΅ΡΡΠΈ ΠΌΠΈΡΠΎΠ², ΠΎΠΊΡΡΠΆΠ°ΡΡΠΈΡ Β«ΠΠ±ΡΡΡ ΡΠ΅ΠΎΡΠΈΡ ΠΏΡΠΈΡΠΎΠ΄ΡΒ» Π.Π. ΠΠ΅ΠΉΠ½ΠΈΠΊΠ°
βThe general theory of the natureβ by A.I. Veynik is analyzed. Absurdity of this theory is shown. The incorrectness of the experiments made in its justification is proved. Need of counteraction to the reviving popularity of this pseudoscientific theory is noted.ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π° Β«ΠΠ±ΡΠ°Ρ ΡΠ΅ΠΎΡΠΈΡ ΠΏΡΠΈΡΠΎΠ΄ΡΒ» Π.Π. ΠΠ΅ΠΉΠ½ΠΈΠΊΠ°. ΠΠΎΠΊΠ°Π·Π°Π½Π° Π°Π±ΡΡΡΠ΄Π½ΠΎΡΡΡ ΡΡΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½Π° Π½Π΅ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎΡΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΡΡ
Π² Π΅Π΅ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ². ΠΡΠΌΠ΅ΡΠ΅Π½Π° Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²ΠΎΠ·ΡΠΎΠΆΠ΄Π°ΡΡΠ΅ΠΉΡΡ ΠΏΠΎΠΏΡΠ»ΡΡΠ½ΠΎΡΡΠΈ ΡΡΠΎΠΉ Π»ΠΆΠ΅Π½Π°ΡΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ
Π Π½Π΅ΠΊΠΎΡΠΎΡΡΡ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΡΡ , ΡΠ»Π΅Π΄ΡΡΡΠΈΡ ΠΈΠ· Π΄ΠΎΠΏΡΡΠ΅Π½ΠΈΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΏΡΠ΅Π΄Π²ΠΈΠ΄Π΅Π½ΠΈΡ Π±ΡΠ΄ΡΡΠ΅Π³ΠΎ
Objects of the study are structure and evolution of the world lines in Minkowskiβs world. The notion of the true world line of the material particle with uniform structure throughout β in the sections of the Past, the Present, and the Future. This can be achieved by substitution of the section of the Future by the branch of the real Future representing ordered multitude of events that will be realized. Studied is the world with prediction differing from Minkowskiβs world by availability of the observerβs opportunity of direct observation (predicting) of some events in the Future. It is proved that actions capable of changing the prediction are either non-existent, or will not be realized. It is pointed out that prediction of the future can be done only in such a way and only with such degree of precision that eliminates the possibility avoiding the predicted events (effect of shadowing of the part of the Future). Predicting of oneβs own future by the observer cannot be used for optimization of the strategy of his behavior. It is proved that the living beingsβ ability to predict future is not inherited by the descendants, including by formation of the special senses. Facts of foreseeing the future can be regarded as predictions only if the following features are present: predictions are not based on the knowledge of the Past and the Present; they are formulated in such a way that eliminates any possibility of avoiding the predicted events by the one to whom they were predicted; no alternative and imminence of the event. Identification of the true facts of prediction of the Future can make the basis for studying the structure and particularities of the Future in world lines.ΠΡΡΠ»Π΅Π΄ΡΡΡΡΡ ΡΡΡΡΠΊΡΡΡΠ° ΠΈ ΡΠ²ΠΎΠ»ΡΡΠΈΡ ΠΌΠΈΡΠΎΠ²ΡΡ
Π»ΠΈΠ½ΠΈΠΉ Π² ΠΌΠΈΡΠ΅ ΠΠΈΠ½ΠΊΠΎΠ²ΡΠΊΠΎΠ³ΠΎ. ΠΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΠΈΡΡΠΈΠ½Π½ΠΎΠΉ ΠΌΠΈΡΠΎΠ²ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ Π΅Π΄ΠΈΠ½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΡ ΡΡΡΡΠΊΡΡΡΡ Π½Π° Π²ΡΠ΅ΠΉ ΡΠ²ΠΎΠ΅ΠΉ ΠΏΡΠΎΡΡΠΆΠ΅Π½Π½ΠΎΡΡΠΈ β Π½Π° ΡΡΠ°ΡΡΠΊΠ°Ρ
ΠΡΠΎΡΠ»ΠΎΠ³ΠΎ, ΠΠ°ΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΈ ΠΡΠ΄ΡΡΠ΅Π³ΠΎ. ΠΡΠΎ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ Π·Π°ΠΌΠ΅Π½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΡΠ΄ΡΡΠ΅Π³ΠΎ Π²Π΅ΡΠ²ΡΡ ΠΈΡΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΡΠ΄ΡΡΠ΅Π³ΠΎ, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΠ΅ΠΉ ΡΠΏΠΎΡΡΠ΄ΠΎΡΠ΅Π½Π½ΠΎΠ΅ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΠ±ΡΡΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ Π±ΡΠ΄ΡΡ Π² ΠΈΡΠΎΠ³Π΅ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ. Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΌΠΈΡ Ρ ΠΏΡΠ΅Π΄Π²ΠΈΠ΄Π΅Π½ΠΈΠ΅ΠΌ, ΠΎΡΠ»ΠΈΡΠ°ΡΡΠΈΠΉΡΡ ΠΎΡ ΠΌΠΈΡΠ° ΠΠΈΠ½ΠΊΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΠΌ, ΡΡΠΎ Π² Π½Π΅ΠΌ Π΄ΠΎΠΏΡΡΠΊΠ°Π΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ Π½Π°Π±Π»ΡΠ΄Π°ΡΡ (ΠΏΡΠ΅Π΄Π²ΠΈΠ΄Π΅ΡΡ) ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Ρ
ΠΈΠ»ΠΈ ΠΈΠ½ΡΡ
ΡΠΎΠ±ΡΡΠΈΠΉ Π² ΠΡΠ΄ΡΡΠ΅ΠΌ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ, ΡΠΏΠΎΡΠΎΠ±Π½ΡΡ
ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡ ΠΏΡΠ΅Π΄Π²ΠΈΠ΄Π΅Π½ΠΈΠ΅, Π»ΠΈΠ±ΠΎ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ, Π»ΠΈΠ±ΠΎ ΠΎΠ½ΠΈ Π½Π΅ Π±ΡΠ΄ΡΡ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ. ΠΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠ΅Π΄Π²ΠΈΠ΄Π΅Π½ΠΈΠ΅ Π±ΡΠ΄ΡΡΠΈΡ
ΡΠΎΠ±ΡΡΠΈΠΉ ΠΌΠΎΠΆΠ΅Ρ Π²ΡΠΏΠΎΠ»Π½ΡΡΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΈ ΡΠΎΠ»ΡΠΊΠΎ Ρ ΡΠ°ΠΊΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΡΡ ΡΠΎΡΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ Π΄ΠΎΠΏΡΡΠΊΠ°ΡΡ ΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ Π½Π°ΡΡΡΠΏΠ»Π΅Π½ΠΈΡ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½Π½ΡΡ
ΡΠΎΠ±ΡΡΠΈΠΉ (ΡΡΡΠ΅ΠΊΡ Π·Π°ΡΠ΅Π½Π΅Π½ΠΈΡ ΡΠ°ΡΡΠΈ ΠΡΠ΄ΡΡΠ΅Π³ΠΎ). ΠΡΠ΅Π΄Π²ΠΈΠ΄Π΅Π½ΠΈΠ΅ ΡΠ²ΠΎΠ΅Π³ΠΎ Π±ΡΠ΄ΡΡΠ΅Π³ΠΎ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΎ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Π΅ΠΌ Π΄Π»Ρ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ ΡΠ²ΠΎΠ΅Π³ΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΏΡΠ΅Π΄Π²ΠΈΠ΄Π΅Π½ΠΈΡ ΡΠ²ΠΎΠ΅Π³ΠΎ Π±ΡΠ΄ΡΡΠ΅Π³ΠΎ, Π΅ΡΠ»ΠΈ ΠΎΠ½Π° ΠΏΠΎΡΠ²Π»ΡΠ΅ΡΡΡ Ρ ΠΆΠΈΠ²ΡΡ
ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ², Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π·Π°ΠΊΡΠ΅ΠΏΠ»ΡΡΡΡΡ Π² ΠΏΠΎΡΠΎΠΌΡΡΠ²Π΅, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ ΠΏΡΡΠ΅ΠΌ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΎΡΠ³Π°Π½ΠΎΠ² ΡΡΠ²ΡΡΠ². ΠΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ ΡΠ°ΠΊΡΡ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΠΉ ΠΡΠ΄ΡΡΠ΅Π³ΠΎ ΠΌΠΎΠ³ΡΡ ΡΡΠΈΡΠ°ΡΡΡΡ ΠΏΡΠ΅Π΄Π²ΠΈΠ΄Π΅Π½ΠΈΠ΅ΠΌ, Π΅ΡΠ»ΠΈ ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°: Π΄Π»Ρ ΠΈΡ
ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎ ΠΡΠΎΡΠ»ΠΎΠΌ ΠΈ ΠΠ°ΡΡΠΎΡΡΠ΅ΠΌ; ΠΎΠ½ΠΈ Π²ΡΠ΅Π³Π΄Π° ΡΠΎΡΠΌΡΠ»ΠΈΡΡΡΡΡΡ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠΎΠ±Ρ Π½Π΅ Π΄ΠΎΠΏΡΡΡΠΈΡΡ ΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΠΎΡ Π½Π°ΡΡΡΠΏΠ»Π΅Π½ΠΈΡ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠ±ΡΡΠΈΡ; ΠΎΠ½ΠΈ Π²ΡΠ΅Π³Π΄Π° Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ Π±Π΅Π·Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΠΎΡΡΡΡ ΠΈ Π½Π΅ΠΈΠ·Π±Π΅ΠΆΠ½ΠΎΡΡΡΡ Π΅Π³ΠΎ Π½Π°ΡΡΡΠΏΠ»Π΅Π½ΠΈΡ. ΠΡΡΠ²Π»Π΅Π½ΠΈΠ΅ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΡ
ΡΠ°ΠΊΡΠΎΠ² ΠΏΡΠ΅Π΄Π²ΠΈΠ΄Π΅Π½ΠΈΡ ΠΡΠ΄ΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΡΠ»ΡΠΆΠΈΡΡ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΡΠ΄ΡΡΠ΅Π³ΠΎ Ρ ΠΌΠΈΡΠΎΠ²ΡΡ
Π»ΠΈΠ½ΠΈΠΉ
Π Π²ΠΎΠΏΡΠΎΡΡ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠ°ΡΡΠΎΠΉ
It was shown that it would be more correct to call Meshcherskiy equation as the equation of movement of material body with separating mass. The equation of dynamics of material point movement with variable mass was obtained, it describes the material point movement, inertial mass change, which is not related to change of its impulse. The peculiarities of the physical body movement with variable inertness are pointed, in particular, the ability to the accelerated movement without the influence of external forces and without interaction with external medium, as well as exceptional maneuverability.ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΠ΅ΡΠ΅ΡΡΠΊΠΎΠ³ΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎ ΠΈΠΌΠ΅Π½ΠΎΠ²Π°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π»Π° Ρ ΡΠ°Π·Π΄Π΅Π»ΡΡΡΠ΅ΠΉΡΡ ΠΌΠ°ΡΡΠΎΠΉ. ΠΠΎΠ»ΡΡΠ΅Π½ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠ°ΡΡΠΎΠΉ, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ΅Π΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½Π΅ΡΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π΅ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π΅Π΅ ΠΈΠΌΠΏΡΠ»ΡΡΠ°. ΠΡΠΌΠ΅ΡΠ΅Π½Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΠΌΠΎΠΉ ΠΈΠ½Π΅ΡΡΠΈΠ΅ΠΉ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΊ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π±Π΅Π· Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²Π½Π΅ΡΠ½ΠΈΡ
ΡΠΈΠ» ΠΈ Π±Π΅Π· Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ Π²Π½Π΅ΡΠ½Π΅ΠΉ ΡΡΠ΅Π΄ΠΎΠΉ
Π Π²ΠΎΠΏΡΠΎΡΡ ΠΎ ΠΏΡΠΈΡΠΈΠ½Π°Ρ ΠΊΠΎΡΠΌΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΠΎΠ»ΡΡΠΎΠ³ΠΎ Π²Π·ΡΡΠ²Π°
Some results of the temporal theory describing the process of time movement (temporal process) have been adduced as a movement of material particles in temporal measurement in a spatial-temporal continuum. Within the framework of this theory it is shown, that temporal process has all physical properties peculiar to the movement β velocity of movement, its energy, inertia, impulse that allows considering movement of time as the real physical process proceeding within the framework of space-temporal continuum. It has been established, that the rest energy and the rest mass of a material particle reflect its energy and inertial properties under the movement in time. The principle of space-temporal incompatibility of material particles having nonzero rest mass has been formulated. It is stated, that action of this principle is not distributed on massless particles. All substance of the Universe is compressed in a singularity point and has indefinitely big density. For massless particles with the stopped movement of time such situation is allowable. From positions of the temporal theory the moment of Β«startβ of time movement in the Universe has been considered. It is stated, that the beginning of course of time as a physical process results in occurrence at substance a rest mass thus representing property of a substance temporal inertia. With the advent of rest mass at material particles the principle of incompatibility of material particles comes into effect that results in explosion compressed up to a point and already incompatible matter of the universe and generates the particles scattering in space. Thus, the βstartβ of process of time movement is possible to be considered as a principal reason of the Big explosion and occurrence of spatial structure of the Universe.ΠΡΠΈΠ²Π΅Π΄Π΅Π½Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ΅ΠΌΠΏΠΎΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (ΡΠ΅ΠΌΠΏΠΎΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ) ΠΊΠ°ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΠΈΡ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠΈΠ½ΡΡΠΌΠ°. Π ΡΠ°ΠΌΠΊΠ°Ρ
ΡΡΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠ΅ΠΌΠΏΠΎΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΡΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, Π΅Π³ΠΎ ΡΠ½Π΅ΡΠ³ΠΈΡ, ΠΈΠ½Π΅ΡΡΠΈΡ, ΠΈΠΌΠΏΡΠ»ΡΡ, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΊΠ°ΠΊ ΡΠ΅Π°Π»ΡΠ½ΡΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΡΠΎΡΠ΅ΡΡ, ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΠΉ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠΈΠ½ΡΡΠΌΠ°. ΠΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΠΎΠΊΠΎΡ ΠΈ ΠΌΠ°ΡΡΠ° ΠΏΠΎΠΊΠΎΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΠΎΡΡΠ°ΠΆΠ°ΡΡ Π΅Π΅ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΈ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π½Π΅ΡΠΎΠ²ΠΌΠ΅ΡΡΠΈΠΌΠΎΡΡΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΠΈΡ, ΠΈΠΌΠ΅ΡΡΠΈΡ
Π½Π΅Π½ΡΠ»Π΅Π²ΡΡ ΠΌΠ°ΡΡΡ ΠΏΠΎΠΊΠΎΡ. ΠΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° Π½Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½ΡΡΡΡΡ Π½Π° Π±Π΅Π·ΠΌΠ°ΡΡΠΎΠ²ΡΠ΅ ΡΠ°ΡΡΠΈΡΡ. ΠΡΠ΅ Π²Π΅ΡΠ΅ΡΡΠ²ΠΎ ΠΡΠ΅Π»Π΅Π½Π½ΠΎΠΉ Π² ΡΠΈΠ½Π³ΡΠ»ΡΡΠ½ΠΎΡΡΠΈ ΡΠΆΠ°ΡΠΎ Π² ΡΠΎΡΠΊΡ ΠΈ ΠΈΠΌΠ΅Π΅Ρ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΡΡ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ. ΠΠ»Ρ Π±Π΅Π·ΠΌΠ°ΡΡΠΎΠ²ΡΡ
ΡΠ°ΡΡΠΈΡ Ρ ΠΎΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°ΠΊΠ°Ρ ΡΠΈΡΡΠ°ΡΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠΎΠΉ. Π‘ ΠΏΠΎΠ·ΠΈΡΠΈΠΉ ΡΠ΅ΠΌΠΏΠΎΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ ΠΌΠΎΠΌΠ΅Π½Ρ Β«Π·Π°ΠΏΡΡΠΊΠ°Β» Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π²ΠΎ ΠΡΠ΅Π»Π΅Π½Π½ΠΎΠΉ. ΠΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ Π½Π°ΡΠ°Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΊΠ°ΠΊ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ Ρ Π²Π΅ΡΠ΅ΡΡΠ²Π° ΠΌΠ°ΡΡ ΠΏΠΎΠΊΠΎΡ, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠ΅ΠΌΠΏΠΎΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈΠ½Π΅ΡΡΠΈΠΈ Π²Π΅ΡΠ΅ΡΡΠ²Π°. Π‘ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ°ΡΡ ΠΏΠΎΠΊΠΎΡ Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΠΈΡ Π²ΡΡΡΠΏΠ°Π΅Ρ Π² Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏ Π½Π΅ΡΠΎΠ²ΠΌΠ΅ΡΡΠΈΠΌΠΎΡΡΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΠΈΡ, ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π²Π·ΡΡΠ²Ρ ΡΠΆΠ°ΡΠΎΠΉ Π΄ΠΎ ΡΠΎΡΠΊΠΈ ΠΈ ΡΠΆΠ΅ Π½Π΅ΡΠΎΠ²ΠΌΠ΅ΡΡΠΈΠΌΠΎΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ ΠΡΠ΅Π»Π΅Π½Π½ΠΎΠΉ ΠΈ ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅Ρ ΡΠ°Π·Π»Π΅Ρ ΡΠ°ΡΡΠΈΡ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΠΠΎΠ»ΡΡΠΎΠ³ΠΎ Π²Π·ΡΡΠ²Π° ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΡΠ΅Π»Π΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ Β«Π·Π°ΠΏΡΡΠΊΒ» ΠΏΡΠΎΡΠ΅ΡΡΠ° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ
Π ΠΏΠΎΠ½ΡΡΠΈΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ Π½Π΅ΠΈΠ·Π±Π΅ΠΆΠ½ΠΎΡΡΠΈ Π΅Π³ΠΎ ΠΊΠ²Π°Π½ΡΠΎΠ²Π°Π½ΠΈΡ
The problems that arise when constructing a time-independent definition of mechanical motion are considered. The key role of the concept of infinity in the understanding of mechanical (and other varieties) of motion is noted. It is shown that only naturally occurring quantization of mo-tion leads to the elimination of motion paradoxes (aporia of Zeno, etc.).Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΠ΅ ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π²ΡΠ΅ΠΌΡΠ½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΡΠΌΠ΅ΡΠ΅Π½Π° ΠΊΠ»ΡΡΠ΅Π²Π°Ρ ΡΠΎΠ»Ρ ΠΏΠΎΠ½ΡΡΠΈΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ Π² ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ (Π΄ΡΡΠ³ΠΈΡ
ΡΠ°Π·Π½ΠΎΠ²ΠΈΠ΄Π½ΠΎΡΡΠ΅ΠΉ) Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΎΠ»ΡΠΊΠΎ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠ΅Π΅ ΠΊΠ²Π°Π½ΡΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΡΡΡΠ°Π½Π΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π΄ΠΎΠΊΡΠΎΠ² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ (Π°ΠΏΠΎΡΠΈΠΈ ΠΠ΅Π½ΠΎΠ½Π° ΠΈ Ρ.Π΄.)
Π ΠΏΡΠΈΡΠΈΠ½Π°Ρ ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π² ΠΏΡΠ΅Π²Π΄ΠΎΠ΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΡΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°Ρ
Theoretical bases of the Temporology, connected with a substantiation of the reasons of occurrence of a phenomenon of a current of time are considered. Features of a current of time in flat pseudoeuclidean spaces are investigated. Connection of the offered approach with a problem baryon asymmetry of the Universe is shown. Possibility of existence within the limits of the offered model invisible objects which can be interpreted as clots of "a dark matterβ is proved.Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Ρ ΡΠ΅ΠΌΠΏΠΎΡΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΈΡΠΈΠ½ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΡΠ΅Π½ΠΎΠΌΠ΅Π½Π° ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΡΠ»Π΅Π΄ΡΡΡΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π² ΠΏΠ»ΠΎΡΠΊΠΈΡ
ΠΏΡΠ΅Π²Π΄ΠΎΠ΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΡΡ
ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°Ρ
. ΠΠΎΠΊΠ°Π·Π°Π½Π° ΡΠ²ΡΠ·Ρ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° Ρ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΎΠΉ Π±Π°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π°ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΡΠ΅Π»Π΅Π½Π½ΠΎΠΉ. ΠΠ±ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°Π΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅Π²ΠΈΠ΄ΠΈΠΌΡΡ
Π³ΡΠ°Π²ΠΈΡΠΈΡΡΡΡΠΈΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠ³ΡΡ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠΈΡΠΎΠ²Π°ΡΡΡΡ ΠΊΠ°ΠΊ ΡΠ³ΡΡΡΠΊΠΈ Β«ΡΠ΅ΠΌΠ½ΠΎΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠΈΒ»
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠΈΠ½ΡΡΠΌΠ° Ρ Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΉ ΠΌΠ΅ΡΡΠΈΠΊΠΎΠΉ, ΠΎΡΠ²Π΅ΡΠ°ΡΡΠ΅Π³ΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°Π»ΡΠ½ΠΎΡΡΠΈ
The theorem, which asserts that for the flat homogeneus isotropic Minkovski space with pseudo-Euclidean metrics is possible to construct a map generating a isomorphic to it linear vector space bearing Euclidean metrics and corresponding to physical reality, has been proved. It has been stated that such model of flat space-time continuum, bearing Euclidean metrics, describes physical reality not less adequately than Minkovski space-time does and takes into account all relativistic effects. This permits to construct a more suitable for analysis geometric interpretation of the special theory of relativity and to make its main results clear.ΠΠΎΠΊΠ°Π·Π°Π½Π° ΡΠ΅ΠΎΡΠ΅ΠΌΠ°, ΡΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡΠ°Ρ, ΡΡΠΎ Π΄Π»Ρ ΠΏΠ»ΠΎΡΠΊΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΡΡΠΎΠΏΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° ΠΠΈΠ½ΠΊΠΎΠ²ΡΠΊΠΎΠ³ΠΎ Ρ ΠΏΡΠ΅Π²Π΄ΠΎΠ΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΉ ΠΌΠ΅ΡΡΠΈΠΊΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡΡΠΎΠΈΡΡ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡΠ΅Π΅ ΠΈΠ·ΠΎΠΌΠΎΡΡΠ½ΠΎΠ΅ Π΅ΠΌΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ΅ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎ, Π½Π΅ΡΡΡΠ΅Π΅ Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²Ρ ΠΌΠ΅ΡΡΠΈΠΊΡ ΠΈ ΠΎΡΠ²Π΅ΡΠ°ΡΡΠ΅Π΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°Π»ΡΠ½ΠΎΡΡΠΈ. ΠΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ ΡΠ°ΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΏΠ»ΠΎΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠΈΠ½ΡΡΠΌΠ°, Π½Π΅ΡΡΡΠ΅Π³ΠΎ Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²Ρ ΠΌΠ΅ΡΡΠΈΠΊΡ, ΠΎΠΏΠΈΡΡΠ²Π°Π΅Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ΅Π°Π»ΡΠ½ΠΎΡΡΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎ, ΡΠ΅ΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²ΠΎ-Π²ΡΠ΅ΠΌΡ ΠΠΈΠ½ΠΊΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΈ ΡΡΠΈΡΡΠ²Π°Π΅Ρ Π²ΡΠ΅ ΡΠ΅Π»ΡΡΠΈΠ²ΠΈΡΡΡΠΊΠΈΠ΅ ΡΡΡΠ΅ΠΊΡΡ. ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ΄ΠΎΠ±Π½ΡΡ Π΄Π»Ρ Π°Π½Π°Π»ΠΈΠ·Π° Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΡΡ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΠ΄Π΅Π»Π°ΡΡ Π½Π°Π³Π»ΡΠ΄Π½ΡΠΌΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π΅Π΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ
Π Π²ΠΎΠΏΡΠΎΡΡ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ Π·ΠΎΠ½ Ρ Π°Π½ΠΎΠΌΠ°Π»ΡΠ½ΡΠΌ Ρ ΠΎΠ΄ΠΎΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ
Possibility of real existence of local stationary Zones on a surface of the Earth with the changed course of time is considered. It is shown, that the assumption about existence of such Zones involves checked physical consequences. The relativity principle in temporal formulation is formulated. Possibilities of modelling of Zones with the changed course of time are considered. It is noticed, that change of a course of time can be described as time scale transformation. Two versions of occurrence of Zones β as physical phenomena and as psychophysiological phenomena are considered. Episodes, according to authors connected with the changed course of time are considered. It is shown, that existence of local stationary areas of space with the changed course of time in considered episodes contradicts existing physical concepts of space-time. It is shown, that their descriptions answer a psychophysiological phenomenon and do not keep within the assumption of possibility of real physical change of a course of time.Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ
ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΡ
ΠΠΎΠ½ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΠ΅ΠΌΠ»ΠΈ Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π½ΡΠΌ Ρ
ΠΎΠ΄ΠΎΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΄ΠΎΠΏΡΡΠ΅Π½ΠΈΠ΅ ΠΎ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°ΠΊΠΈΡ
ΠΠΎΠ½ Π²Π»Π΅ΡΠ΅Ρ Π·Π° ΡΠΎΠ±ΠΎΠΉ ΠΏΡΠΎΠ²Π΅ΡΡΠ΅ΠΌΡΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΡ. Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π² ΡΠ΅ΠΌΠΏΠΎΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ΅. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠΎΠ½ Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π½ΡΠΌ Ρ
ΠΎΠ΄ΠΎΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΠΌΠ΅ΡΠ΅Π½ΠΎ, ΡΡΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ
ΠΎΠ΄Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΠΏΠΈΡΠ°Π½ΠΎ ΠΊΠ°ΠΊ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΌΠ°ΡΡΡΠ°Π±Π½ΠΎΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅. Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ Π΄Π²Π΅ Π²Π΅ΡΡΠΈΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΠΠΎΠ½ β ΠΊΠ°ΠΊ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅Π½ΠΎΠΌΠ΅Π½ΠΎΠ² ΠΈ ΠΊΠ°ΠΊ ΠΏΡΠΈΡ
ΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅Π½ΠΎΠΌΠ΅Π½ΠΎΠ². Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΠΏΠΈΠ·ΠΎΠ΄Ρ, ΠΏΠΎ ΠΌΠ½Π΅Π½ΠΈΡ Π°Π²ΡΠΎΡΠΎΠ² ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π½ΡΠΌ Ρ
ΠΎΠ΄ΠΎΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ
ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΡ
ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π½ΡΠΌ Ρ
ΠΎΠ΄ΠΎΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π² ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΡΡ
ΡΠΏΠΈΠ·ΠΎΠ΄Π°Ρ
ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠΈΡ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΠΌ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΡΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°-Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΈΡ
ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΎΡΠ²Π΅ΡΠ°ΡΡ ΠΏΡΠΈΡ
ΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΠ΅Π½ΠΎΠΌΠ΅Π½Ρ ΠΈ Π½Π΅ ΡΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡΡΡ Π² ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Ρ
ΠΎΠ΄Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ