3 research outputs found

    Tunable Visibly Transparent Optics Derived from Porous Silicon

    No full text
    Visibly transparent porous silicon dioxide (PSiO<sub>2</sub>) and PSiO<sub>2</sub>/titanium dioxide (TiO<sub>2</sub>) optical elements were fabricated by thermal oxidation, or a combination of thermal oxidation and atomic layer deposition infilling, of an electrochemically etched porous silicon (PSi) structure containing an electrochemically defined porosity profile. The thermally oxidized PSiO<sub>2</sub> structures are transparent at visible wavelengths and can be designed to have refractive indices ranging from 1.1 to 1.4. The refractive index can be increased above 2.0 through TiO<sub>2</sub> infilling of the pores. Applying this oxidation and TiO<sub>2</sub> infilling methodology enabled tuning of a distributed Bragg reflector (DBR) formed from PSi across the visible spectrum. At the maximum filling, the DBR exhibited a transmission of 2% at 620 nm. Simulations match well with measured spectra. In addition to forming DBR filters, phase-shaping gradient refractive index (GRIN) elements were formed. As a demonstration, a 4 mm diameter radial GRIN PSiO<sub>2</sub> element with a parabolic, lens-like phase profile with a calculated focal length of 1.48 m was formed. The calculated focal length was reduced to 0.80 m upon the addition of TiO<sub>2</sub>. All the structures showed broad transparency in the visible and were stable to the materials conversion process

    Transfer-Printing of Tunable Porous Silicon Microcavities with Embedded Emitters

    No full text
    Here we demonstrate, via a modified transfer-printing technique, that electrochemically fabricated porous silicon (PSi) distributed Bragg reflectors (DBRs) can serve as the basis of high-quality hybrid microcavities compatible with most forms of photoemitters. Vertical microcavities consisting of an emitter layer sandwiched between 11- and 15-period PSi DBRs were constructed. The emitter layer included a polymer doped with PbS quantum dots, as well as a heterogeneous GaAs thin film. In this structure, the PbS emission was significantly redistributed to a 2.1 nm full-width at half-maximum around 1198 nm, while the PSi/GaAs hybrid microcavity emitted at 902 nm with a sub-nanometer full-width at half-maximum and quality-factor of 1058. Modification of PSi DBRs to include a PSi cavity coupling layer enabled tuning of the total cavity optical thickness. Infiltration of the PSi with Al<sub>2</sub>O<sub>3</sub> by atomic layer deposition globally red-shifted the emission peak of PbS quantum dots up to ∼18 nm (∼0.9 nm per cycle), while introducing a cavity coupling layer with a gradient optical thickness spatially modulated the cavity resonance of the PSi/GaAs hybrid such that there was an ∼30 nm spectral variation in the emission of separate GaAs modules printed ∼3 mm apart

    Porous Silicon Gradient Refractive Index Micro-Optics

    No full text
    The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations
    corecore