50 research outputs found

    When correlations matter - response of dynamical networks to small perturbations

    Full text link
    We systematically study and compare damage spreading for random Boolean and threshold networks under small external perturbations (damage), a problem which is relevant to many biological networks. We identify a new characteristic connectivity KsK_s, at which the average number of damaged nodes after a large number of dynamical updates is independent of the total number of nodes NN. We estimate the critical connectivity for finite NN and show that it systematically deviates from the annealed approximation. Extending the approach followed in a previous study, we present new results indicating that internal dynamical correlations tend to increase not only the probability for small, but also for very large damage events, leading to a broad, fat-tailed distribution of damage sizes. These findings indicate that the descriptive and predictive value of averaged order parameters for finite size networks - even for biologically highly relevant sizes up to several thousand nodes - is limited.Comment: 4 pages, 4 figures. Accepted for the "Workshop on Computational Systems Biology", Leipzig 200

    Learning, Generalization, and Functional Entropy in Random Automata Networks

    Full text link
    It has been shown \citep{broeck90:physicalreview,patarnello87:europhys} that feedforward Boolean networks can learn to perform specific simple tasks and generalize well if only a subset of the learning examples is provided for learning. Here, we extend this body of work and show experimentally that random Boolean networks (RBNs), where both the interconnections and the Boolean transfer functions are chosen at random initially, can be evolved by using a state-topology evolution to solve simple tasks. We measure the learning and generalization performance, investigate the influence of the average node connectivity KK, the system size NN, and introduce a new measure that allows to better describe the network's learning and generalization behavior. We show that the connectivity of the maximum entropy networks scales as a power-law of the system size NN. Our results show that networks with higher average connectivity KK (supercritical) achieve higher memorization and partial generalization. However, near critical connectivity, the networks show a higher perfect generalization on the even-odd task

    Damage Spreading and Criticality in Finite Random Dynamical Networks

    Full text link
    We systematically study and compare damage spreading at the sparse percolation (SP) limit for random boolean and threshold networks with perturbations that are independent of the network size NN. This limit is relevant to information and damage propagation in many technological and natural networks. Using finite size scaling, we identify a new characteristic connectivity KsK_s, at which the average number of damaged nodes dˉ\bar d, after a large number of dynamical updates, is independent of NN. Based on marginal damage spreading, we determine the critical connectivity Kcsparse(N)K_c^{sparse}(N) for finite NN at the SP limit and show that it systematically deviates from KcK_c, established by the annealed approximation, even for large system sizes. Our findings can potentially explain the results recently obtained for gene regulatory networks and have important implications for the evolution of dynamical networks that solve specific computational or functional tasks.Comment: 4 pages, 4 eps figure

    Local structure of directed networks

    Full text link
    Previous work on undirected small-world networks established the paradigm that locally structured networks tend to have high density of short loops. On the other hand, many realistic networks are directed. Here we investigate the local organization of directed networks and find, surprisingly, that real networks often have very few short loops as compared to random models. We develop a theory and derive conditions for determining if a given network has more or less loops than its randomized counterpart. These findings carry broad implications for structural and dynamical processes sustained by directed networks

    Assessing Random Dynamical Network Architectures for Nanoelectronics

    Full text link
    Independent of the technology, it is generally expected that future nanoscale devices will be built from vast numbers of densely arranged devices that exhibit high failure rates. Other than that, there is little consensus on what type of technology and computing architecture holds most promises to go far beyond today's top-down engineered silicon devices. Cellular automata (CA) have been proposed in the past as a possible class of architectures to the von Neumann computing architecture, which is not generally well suited for future parallel and fine-grained nanoscale electronics. While the top-down engineered semi-conducting technology favors regular and locally interconnected structures, future bottom-up self-assembled devices tend to have irregular structures because of the current lack precise control over these processes. In this paper, we will assess random dynamical networks, namely Random Boolean Networks (RBNs) and Random Threshold Networks (RTNs), as alternative computing architectures and models for future information processing devices. We will illustrate that--from a theoretical perspective--they offer superior properties over classical CA-based architectures, such as inherent robustness as the system scales up, more efficient information processing capabilities, and manufacturing benefits for bottom-up designed devices, which motivates this investigation. We will present recent results on the dynamic behavior and robustness of such random dynamical networks while also including manufacturing issues in the assessment.Comment: 8 pages, 6 figures, IEEE/ACM Symposium on Nanoscale Architectures, NANOARCH 2008, Anaheim, CA, USA, Jun 12-13, 200

    Optimization in Gradient Networks

    Full text link
    Gradient networks can be used to model the dominant structure of complex networks. Previous works have focused on random gradient networks. Here we study gradient networks that minimize jamming on substrate networks with scale-free and Erd\H{o}s-R\'enyi structure. We introduce structural correlations and strongly reduce congestion occurring on the network by using a Monte Carlo optimization scheme. This optimization alters the degree distribution and other structural properties of the resulting gradient networks. These results are expected to be relevant for transport and other dynamical processes in real network systems.Comment: 5 pages, 4 figure

    Mapping the evolution of scientific fields

    Get PDF
    Despite the apparent cross-disciplinary interactions among scientific fields, a formal description of their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific fields using a network-based analysis. We build an idea network consisting of American Physical Society Physics and Astronomy Classification Scheme (PACS) numbers as nodes representing scientific concepts. Two PACS numbers are linked if there exist publications that reference them simultaneously. We locate scientific fields using a community finding algorithm, and describe the time evolution of these fields over the course of 1985-2006. The communities we identify map to known scientific fields, and their age depends on their size and activity. We expect our approach to quantifying the evolution of ideas to be relevant for making predictions about the future of science and thus help to guide its development.Comment: v3: re-ran analysis with new noise parameter choice; 10 pages for main paper; 11 pages for suppl. inf
    corecore