5,631 research outputs found
Mass-to-light ratios of ellipticals in LCDM
We use the mass-to-light gradients in early-type galaxies to infer the global
dark matter fraction, f_d=M_d/M_*, for these systems. We discuss implications
about the total star formation efficiency in dark-matter halos and show that
the trend of with mass produces virial mass-to-light ratios which
are consistent with semi-analitical models. Preliminary kurtosis analysis of
the quasi-constant M/L galaxies in Romanowsky et al. seems at odd with Dekel et
al. simulations.Comment: 5 pages, 4 figures. To appear in Proceedings of XXIst IAP Colloquium,
"Mass Profiles & Shapes of Cosmological Structures" (Paris, 4-9 July 2005),
eds G. A. Mamon, F. Combes, C. Deffayet, B. Fort (Paris: EDP Sciences).
Figure enlarged with respect the proceeding format, minor changes.
Collaboration website at http://www.astro.rug.nl/~pns/pns_team.htm
Dark Matter and IMF normalization in Virgo dwarf early-type galaxies
In this work we analyze the dark matter (DM) fraction, , and
mass-to-light ratio mismatch parameter, (computed with respect
to a Milky-Way-like IMF), for a sample of 39 dwarf early-type galaxies (dEs) in
the Virgo cluster. Both and are estimated within the
central (one effective radius) galaxy regions, with a Jeans dynamical analysis
that relies on galaxy velocity dispersions, structural parameters, and stellar
M/L ratios from the SMAKCED survey. In this first attempt to constrain,
simultaneously, the IMF normalization and the DM content, we explore the impact
of different assumptions on the DM model profile. On average, for a NFW
profile, the is consistent with a Chabrier-like normalization
(), with . One of the main results of
the present work is that for at least a few systems the is
heavier than the MW-like value (i.e. either top- or bottom-heavy). When
introducing tangential anisotropy, larger and smaller
are derived. Adopting a steeper concentration-mass relation than that from
simulations, we find lower () and larger . A
constant M/L profile with null gives the heaviest
(). In the MONDian framework, we find consistent results to those for
our reference NFW model. If confirmed, the large scatter of for
dEs would provide (further) evidence for a non-universal IMF in early-type
systems. On average, our reference estimates are consistent with those
found for low- () early-type
galaxies (ETGs). Furthermore, we find consistent with values from the
SMAKCED survey, and find a double-value behavior of with stellar mass,
which mirrors the trend of dynamical M/L and global star formation efficiency
with mass.Comment: 11 pages, 3 figures, 1 table, published on MNRAS. Figure 1 has been
updated with respect to version 1, including the range of values found if the
S\'ersic index, n, is varied from 0.5 to 2 (dark-green curves
Central dark matter content of early-type galaxies: scaling relations and connections with star formation histories
We examine correlations between masses, sizes and star formation histories for a large sample of low-redshift early-type galaxies, using a simple suite of dynamical and stellar population models. We confirm an anticorrelation between the size and stellar age and go on to survey for trends with the central content of dark matter (DM). An average relation between the central DM density and galaxy size of 〈ρDM〉∝R−2eff provides the first clear indication of cuspy DM haloes in these galaxies – akin to standard Λ cold dark matter haloes that have undergone adiabatic contraction. The DM density scales with galaxy mass as expected, deviating from suggestions of a universal halo profile for dwarf and late-type galaxies. We introduce a new fundamental constraint on galaxy formation by finding that the central DM fraction decreases with stellar age. This result is only partially explained by the size–age dependencies, and the residual trend is in the opposite direction to basic DM halo expectations. Therefore, we suggest that there may be a connection between age and halo contraction and that galaxies forming earlier had stronger baryonic feedback, which expanded their haloes, or lumpier baryonic accretion, which avoided halo contraction. An alternative explanation is a lighter initial mass function for older stellar populations
Colour gradients of high-redshift Early-Type Galaxies from hydrodynamical monolithic models
We analyze the evolution of colour gradients predicted by the hydrodynamical
models of early type galaxies (ETGs) in Pipino et al. (2008), which reproduce
fairly well the chemical abundance pattern and the metallicity gradients of
local ETGs. We convert the star formation (SF) and metal content into colours
by means of stellar population synthetic model and investigate the role of
different physical ingredients, as the initial gas distribution and content,
and eps_SF, i.e. the normalization of SF rate. From the comparison with high
redshift data, a full agreement with optical rest-frame observations at z < 1
is found, for models with low eps_SF, whereas some discrepancies emerge at 1 <
z < 2, despite our models reproduce quite well the data scatter at these
redshifts. To reconcile the prediction of these high eps_SF systems with the
shallower colour gradients observed at lower z we suggest intervention of 1-2
dry mergers. We suggest that future studies should explore the impact of wet
galaxy mergings, interactions with environment, dust content and a variation of
the Initial Mass Function from the galactic centers to the peripheries.Comment: 13 pages, 7 figures, 1 table, accepted for publication on MNRA
Population gradients in the Sloan Digital Sky Survey Galaxy Catalogue: the role of merging
We investigate the role of the environment on the colour and stellar population gradients in a local sample of ∼3500 central and ∼1150 satellite Sloan Digital Sky Survey (SDSS) early-type galaxies. The environment is parametrized in terms of the number of satellite galaxies, Ngal, in each group. For central galaxies, we find that both optical colour and mass-to-light (M/L) ratio gradients are shallower in central galaxies residing in denser environments (higher Ngal). This trend is driven by metallicity gradients, while age gradients appear to be less dependent on the environment and to have a larger scatter. On the other hand, satellites do not show any differences in terms of the environment. The same results are found if galaxies are classified by central age, and both central and satellite galaxies have shallower gradients if they are older and steeper gradients if younger, satellites being independent of ages. In central galaxies, we show that the observed trends can be explained with the occurrence of dry mergings, which are more numerous in denser environments and producing shallower colour gradients because of more uniform metallicity distributions due to the mixing of stellar populations, while no final clues about merging occurrence can be obtained for satellites. Finally, we discuss all systematics on stellar population fitting and their impact on the final result
Colour and stellar population gradients in galaxies
We discuss the colour, age and metallicity gradients in a wide sample of
local SDSS early- and late-type galaxies. From the fitting of stellar
population models we find that metallicity is the main driver of colour
gradients and the age in the central regions is a dominant parameter which
rules the scatter in both metallicity and age gradients. We find a consistency
with independent observations and a set of simulations. From the comparison
with simulations and theoretical considerations we are able to depict a general
picture of a formation scenario.Comment: 4 pages, 4 figures. Proceedings of 54th Congresso Nazionale della
SAIt, Napoli 4-7 May 201
Evolution of central dark matter of early-type galaxies up to z ~ 0.8
We investigate the evolution of dark and luminous matter in the central
regions of early-type galaxies (ETGs) up to z ~ 0.8. We use a spectroscopically
selected sample of 154 cluster and field galaxies from the EDisCS survey,
covering a wide range in redshifts (z ~ 0.4-0.8), stellar masses ( ~ 10.5-11.5 dex) and velocity dispersions
( ~ 100-300 \, km/s). We obtain central dark matter (DM)
fractions by determining the dynamical masses from Jeans modelling of galaxy
aperture velocity dispersions and the from galaxy colours, and
compare the results with local samples. We discuss how the correlations of
central DM with galaxy size (i.e. the effective radius, ),
and evolve as a function of redshift, finding
clear indications that local galaxies are, on average, more DM dominated than
their counterparts at larger redshift. This DM fraction evolution with can
be only partially interpreted as a consequence of the size-redshift evolution.
We discuss our results within galaxy formation scenarios, and conclude that the
growth in size and DM content which we measure within the last 7 Gyr is
incompatible with passive evolution, while it is well reproduced in the
multiple minor merger scenario. We also discuss the impact of the IMF on our DM
inferences and argue that this can be non-universal with the lookback time. In
particular, we find the Salpeter IMF can be better accommodated by low redshift
systems, while producing stellar masses at high- which are unphysically
larger than the estimated dynamical masses (particularly for
lower- systems).Comment: 14 pages, 6 figures, 3 tables, MNRAS in pres
Catalog of quasars from the Kilo-Degree Survey Data Release 3
We present a catalog of quasars selected from broad-band photometric ugri
data of the Kilo-Degree Survey Data Release 3 (KiDS DR3). The QSOs are
identified by the random forest (RF) supervised machine learning model, trained
on SDSS DR14 spectroscopic data. We first cleaned the input KiDS data from
entries with excessively noisy, missing or otherwise problematic measurements.
Applying a feature importance analysis, we then tune the algorithm and identify
in the KiDS multiband catalog the 17 most useful features for the
classification, namely magnitudes, colors, magnitude ratios, and the stellarity
index. We used the t-SNE algorithm to map the multi-dimensional photometric
data onto 2D planes and compare the coverage of the training and inference
sets. We limited the inference set to r<22 to avoid extrapolation beyond the
feature space covered by training, as the SDSS spectroscopic sample is
considerably shallower than KiDS. This gives 3.4 million objects in the final
inference sample, from which the random forest identified 190,000 quasar
candidates. Accuracy of 97%, purity of 91%, and completeness of 87%, as derived
from a test set extracted from SDSS and not used in the training, are confirmed
by comparison with external spectroscopic and photometric QSO catalogs
overlapping with the KiDS footprint. The robustness of our results is
strengthened by number counts of the quasar candidates in the r band, as well
as by their mid-infrared colors available from WISE. An analysis of parallaxes
and proper motions of our QSO candidates found also in Gaia DR2 suggests that a
probability cut of p(QSO)>0.8 is optimal for purity, whereas p(QSO)>0.7 is
preferable for better completeness. Our study presents the first comprehensive
quasar selection from deep high-quality KiDS data and will serve as the basis
for versatile studies of the QSO population detected by this survey.Comment: Data available from the KiDS website at
http://kids.strw.leidenuniv.nl/DR3/quasarcatalog.php and the source code from
https://github.com/snakoneczny/kids-quasar
- …
