233 research outputs found

    Theoretical Analysis of Bayesian Optimisation with Unknown Gaussian Process Hyper-Parameters

    Full text link
    Bayesian optimisation has gained great popularity as a tool for optimising the parameters of machine learning algorithms and models. Somewhat ironically, setting up the hyper-parameters of Bayesian optimisation methods is notoriously hard. While reasonable practical solutions have been advanced, they can often fail to find the best optima. Surprisingly, there is little theoretical analysis of this crucial problem in the literature. To address this, we derive a cumulative regret bound for Bayesian optimisation with Gaussian processes and unknown kernel hyper-parameters in the stochastic setting. The bound, which applies to the expected improvement acquisition function and sub-Gaussian observation noise, provides us with guidelines on how to design hyper-parameter estimation methods. A simple simulation demonstrates the importance of following these guidelines.Comment: 16 pages, 1 figur

    Linear and Parallel Learning of Markov Random Fields

    Full text link
    We introduce a new embarrassingly parallel parameter learning algorithm for Markov random fields with untied parameters which is efficient for a large class of practical models. Our algorithm parallelizes naturally over cliques and, for graphs of bounded degree, its complexity is linear in the number of cliques. Unlike its competitors, our algorithm is fully parallel and for log-linear models it is also data efficient, requiring only the local sufficient statistics of the data to estimate parameters

    Portfolio Allocation for Bayesian Optimization

    Full text link
    Bayesian optimization with Gaussian processes has become an increasingly popular tool in the machine learning community. It is efficient and can be used when very little is known about the objective function, making it popular in expensive black-box optimization scenarios. It uses Bayesian methods to sample the objective efficiently using an acquisition function which incorporates the model's estimate of the objective and the uncertainty at any given point. However, there are several different parameterized acquisition functions in the literature, and it is often unclear which one to use. Instead of using a single acquisition function, we adopt a portfolio of acquisition functions governed by an online multi-armed bandit strategy. We propose several portfolio strategies, the best of which we call GP-Hedge, and show that this method outperforms the best individual acquisition function. We also provide a theoretical bound on the algorithm's performance.Comment: This revision contains an updated the performance bound and other minor text change

    Distributed Parameter Estimation in Probabilistic Graphical Models

    Full text link
    This paper presents foundational theoretical results on distributed parameter estimation for undirected probabilistic graphical models. It introduces a general condition on composite likelihood decompositions of these models which guarantees the global consistency of distributed estimators, provided the local estimators are consistent
    • …
    corecore