26 research outputs found

    Laboratory Study of the Effect of Electromagnetic Waves on Airflow during Air Sparging

    Get PDF
    Air sparging is a technique that uses the injection of a gas (e.g., air, oxygen) into the subsurface to remediate saturated soils and groundwater contaminated with volatile organic compounds (VOCs). Contaminant-removal efficiency and air-sparging performance are highly dependent on the pattern and type of airflow. Airflow, however, suffers from air channel formation (i.e., preferential paths for airflow), limiting remediation to smaller contaminated zones. This paper presents the results of experimental work investigating the possibility of controlling and improving airflow patterns through a saturated glass-bead medium using electromagnetic (EM) waves to enhance air sparging. The test setup consists of a resonant cavity made of an acrylic tank covered with transparent, electrically conductive films. Experimental measurement of the electric field component of EM waves is performed at different frequencies. Airflow pattern is also studied at different air-injection pressure levels with/without EM stimulation. The zone of influence (ZOI) during air sparging is monitored using digital imaging. A quantitative approach is then taken to correlate the characteristics of EM waves and airflow patterns

    Study of Mechanisms Governing Electromagnetic Alteration of Hydraulic Conductivity of Soils

    Get PDF
    Hydraulic conductivity is a measure of the rate at which water flows through porous media. Because of the dipole properties of water molecules, electric field can affect hydraulic conductivity. In this study, the effect of radio-frequency (RF) waves on hydraulic conductivity is investigated. This is important both for the geophysical measurement of hydraulic conductivity as well as remediation using electromagnetic waves. Bentonite clay and sandy samples are tested in rigid-wall, cylindrical permeameters and stimulated using a CPVC-cased monopole antenna vertically centered in the permeameters. The permeameters are encased within RF cavities constructed of aluminum mesh in order to prevent interference from the outside and to confine the RF wave to the medium. Falling-head and constant-head tests are performed to measure the hydraulic conductivity of the clayey and sandy soil samples, respectively. The results show a correlation between the change in the hydraulic conductivity and various characteristics of the RF stimulation. The change is, however, different for sandy and clayey soils

    Electromagnetically Induced Transport in Water for Geoenvironmental Applications

    Get PDF
    Air sparging is a popular soil remediation technique that enables the removal of contaminants through diffusing air into soil. The removal process is, however, slow. The goal of this work is to study the effect of electromagnetic (EM) waves —with minimal heat generation— on transport mechanisms such as diffusion, in order to improve airflow or contaminant transport in order to expedite the cleanup process using air sparging or similar technologies. This effect is studied through an experimental setup that examines the diffusion of a nonreactive dye in water under EM waves at a range of frequencies (50-200 MHz). The electric field was simulated using COMSOL Multiphysics for better three-dimensional (3D) visualization and analysis and then validated using the experimental measurements. A dielectrophoretic study was then performed using the simulated electric field. Various dye flows under EM stimulation at different frequencies were compared. At 65 MHz and 76 MHz, the dye flow was in the direction of the dielectrophoretic forces, which are believed to be the governing mechanism for the EM-stimulated dye transport

    Effects of Air-Injection Pressure on Airflow Pattern of Air Sparging

    Get PDF
    Air sparging is a remediation technology for treating soil/groundwater contaminated with volatile organic compounds (VOCs). VOC removal during air sparging is rendered less effective because of the random formation of air channels, creating preferential paths for airflow, thus limiting remediation to these channels, referred to as a zone of influence (ZOI). Pulsation is a popular method used to improve the effectiveness of air sparging through cyclic operation, with the hope that air channels would form elsewhere. Pulsation makes air sparging more time-consuming. This paper studies the effects of one cycle of pulsation and air pressure on the airflow pattern and presents a laboratory study that investigated the effects of initial and further increases in the injected air’s pressure on the airflow pattern within a glass-bead medium used as a medium analogous to the soil. Digital images of airflow patterns were collected; these images show a larger radius of influence (ROI) and ZOI due to the initial air-pressure increase, particularly when a higher overburden pressure (i.e. the stress due to the partially saturated layer on top of the saturated soil-simulant layer) exists above the water-saturated zone. Further air-pressure increases seem to have no measurable effect on the ROI and the shape of the ZOI

    Effect of levetiracetam drug on antioxidant and liver enzymes in epileptic patients: case-control study

    Get PDF
    Background: There is a limited amount of data regarding levetiracetam (LEV), an antiepileptic drug. Objective: This study was conducted to assess the effect of LEV on antioxidant status and liver enzymes. Method: In this case-control study, 33 epileptic patients under treatment with LEV for at least 6 months were compared with 35 healthy subjects. We measured serum total antioxidant capacity (TAC), salivary superoxide dismutase (SOD), alanine aminoteransferase (ALT), and aspartate aminoteransferase (AST) levels in both groups. Dietary intakes were collected using a Food Frequency Questionnaire (FFQ). Result: The level of TAC in the healthy subjects was significantly higher than it was in the patients (P=0.02), but the mean of ALT (P=0.02) and AST (P=0.03) was significantly higher in the patients in comparison with the controls. Mean salivary SOD showed no difference between the two groups. In the patients, the duration of drug use was inversely correlated with serum TAC (p=0.04) and had a direct correlation with ALT (p=0.01) and AST (p=0.03.). Conclusion: The results of our study indicated that LEV increased liver enzymes Also, treatment with this drug did not improve oxidative stress, but this could be due to the different in the dietary antioxidant intake. Routine screening of the liver and antioxidant enzymes in patients with chronic use of LEV is recommended

    Sleep Disorders in Methadone Maintenance Treatment Volunteers and Opium-‎dependent Patients

    Get PDF
    Background‎: The relationship between substance use and sleep is bidirectional. Substance use directly causes sleep disturbances, and sleep problems are a critical factor in substance-use relapse. Methods: This study evaluated sleep disorders in 65 methadone maintenance treatment (MMT) patients, and 61 opium-dependent patients who did not receive any treatment between September 2011 and July 2012 in Kermanshah, Iran. Both groups filled out the Pittsburgh Sleep Quality Index (PSQI) and Global Sleep Assessment Questionnaire (GSAQ).Findings: Sleep disorders were remarkably similar in both groups: 78.5% of MMT patients and 87.7% of opium-dependent patients suffered from sleep problems. Sleep disorders in the opium-dependent group were remarkably higher and more prominent.Conclusion: Compared to opium, MMT does not have as many negative effects on sleep and is more effective in mitigating sleep problems

    Electromagnetic Waves\u27 Effect on Airflow During Air Sparging

    No full text
    Air sparging is a popular, yet slow, remediation technology for soil and groundwater contaminated with volatile organic compounds (VOCs). This paper theoretically and experimentally studies the effect of electromagnetic (EM) waves on air-channel formation within a glass-bead medium—used as an analogy to soil—during air-sparging experiments. The impact of EM waves on cleanup is not the focus of this paper, and the impact on airflow may or may not positively impact resulting cleanup process using air sparging to remove VOCs through volatilization. The hypothesis is that dielectrophoretic forces by EM waves can be used to alter airflow. Air injection was performed at different pressures, in the presence of EM waves (referred to as EM-stimulated) of various power and frequencies and the absence of EM waves (referred to as unstimulated). Digital images of the airflow patterns were collected, processed, and analyzed for all tests. The shape of the zone of influence (ZOI) was observed, and the radius of the zone of influence (ROI) was measured, which showed a 16% increase in ROI due to EM stimulation. An experimentally validated numerical simulation of the electric-field component of EM waves was developed. The correlation between EM-wave and air sparging characteristics were then studied using the numerical simulation and acquired digital images of the airflow to investigate and validate that the dielectrophoretic mechanism is behind the EM effect on airflow

    Effects of air-injection pressure on airflow pattern of air sparging

    Full text link
    Air sparging is a remediation technology for treating soil/groundwater contaminated with volatile organic compounds (VOCs). VOC removal during air sparging is rendered less effective because of the random formation of air channels, creating preferential paths for airflow, thus limiting remediation to these channels, referred to as a zone of influence (ZOI). Pulsation is a popular method used to improve the effectiveness of air sparging through cyclic operation, with the hope that air channels would form elsewhere. Pulsation makes air sparging more time-consuming. This paper studies the effects of one cycle of pulsation and air pressure on the airflow pattern and presents a laboratory study that investigated the effects of initial and further increases in the injected air’s pressure on the airflow pattern within a glass-bead medium used as a medium analogous to the soil. Digital images of airflow patterns were collected; these images show a larger radius of influence (ROI) and ZOI due to the initial air-pressure increase, particularly when a higher overburden pressure (i.e. the stress due to the partially saturated layer on top of the saturated soil-simulant layer) exists above the water-saturated zone. Further air-pressure increases seem to have no measurable effect on the ROI and the shape of the ZOI. </jats:p

    Laboratory Study of Electromagnetically Induced Contaminant Removal

    No full text
    Soil contamination with hazardous substances can be in solid or liquid forms such as petrochemicals or chlorinated solvents hydrocarbons. Contaminants in soil can be physically or chemically adsorbed to soil grains or only trapped in pore space. Soil contamination usually occurs through spillage or burial directly at the contaminated area or migration from a spillage or burial source occurred elsewhere. Some of most occurring sources of soil pollution are petrochemical and chemical contamination. This study investigates the use of electromagnetic (EM) waves with various radiation patterns to induce a controlled transportation of a nonhazardous dye (used as contamination simulant). The medium in this study is aqueous (i.e., water), which helps to monitor the contaminant simulant transport under EM stimulated conditions. EM waves can be launched into the medium at proper frequencies to minimize the heat generation and temperature increase, yet induce a transport according to the EM radiation pattern. Then, the contaminant-simulant transport under EM-stimulated and unstimulated conditions were studied, and the results suggest that dielectrophoresis can be the underlying mechanism of observed EM-induced flow of the contaminant Simulant in the aqueous medium. This is consistent with numerical results as well

    Vitamin B12 and folate status in patients with epilepsy under levetiracetam monotherapy

    No full text
    Background: Antiepileptic drugs (AEDs) may lead to an increase in the plasma concentration of homocysteine. There is limited information, especially from Iran, regarding the risk in patients who are treated with levetiracetam as a new type of AED. The aim of the present study was to investigate the effect of levetiracetam on plasma homocysteine, vitamin B12, and folate levels in adult patients with epilepsy. Methods: We conducted a case-control study and enrolled adult patients with epilepsy who had received monotherapy with levetiracetam for at least 6 months at some time prior to the study. homocysteine serum, vitamin B12, and folate were measured, and folate and vitamin B12 intake was determined by the food frequency questionnaire (FFQ). Results: Thirty-three patients on levetiracetam and 35 control subjects aged between 18 and 60 years were enrolled. No statistically significant differences in the means of the serum markers of vitamin B12, FA, and homocysteine levels were found between the two groups. In the first model,i.e., the crude model, no significant differences were observed in the serum concentrations of homocysteine, vitamin B12, and folate. In the second model, education was considered, and body mass index and folate intake was controlled with no significant difference being observed in the mean homocysteine serum level. Conclusions: Treatment with levetiracetam in patients with epilepsy has no effect on the serum levels concentrations of homocysteine, vitamin B12, and folate. This medication is suggested for patients who use AEDs on a long-term basis and at high dosages
    corecore