2 research outputs found

    Flexible and Patterned Thin Film Polarizer: Photopolymerization of Perylene-based Lyotropic Chromonic Reactive Mesogens

    No full text
    A perylene-based reactive mesogen (DAPDI) forming a lyotropic chromonic liquid crystal (LCLC) phase was newly designed and synthesized for the fabrication of macroscopically oriented and patterned thin film polarizer (TFP) on the flexible polymer substrates. The anisotropic optical property and molecular self-assembly of DAPDI were investigated by the combination of microscopic, scattering and spectroscopic techniques. The main driving forces of molecular self-assembly were the face-to-face π–π intermolecular interaction among aromatic cores and the nanophase separation between hydrophilic ionic groups and hydrophobic aromatic cores. Degree of polarization for the macroscopically oriented and photopolymerized DAPDI TFP was estimated to be 99.81% at the <i><b>λ</b></i><sub>max</sub> = 491 nm. After mechanically shearing the DAPDI LCLC aqueous solution on the flexible polymer substrates, we successfully fabricated the patterned DAPDI TFP by etching the unpolymerized regions selectively blocked by a photomask during the photopolymerization process. Chemical and mechanical stabilities were confirmed by the solvent and pencil hardness tests, and its surface morphology was further investigated by optical microscopy, atomic force microscopy, and three-dimensional surface nanoprofiler. The flexible and patterned DAPDI TFP with robust chemical and mechanical stabilities can be a stepping stone for the advanced flexible optoelectronic devices

    Azobenzene Molecular Machine: Light-Induced Wringing Gel Fabricated from Asymmetric Macrogelator

    No full text
    To develop light-triggered wringing gels, an asymmetric macrogelator (1AZ3BP) was newly synthesized by the chemically bridging a photoisomerizable azobenzene (1AZ) molecular machine and a biphenyl-based (3BP) dendron with a 1,4-phenylenediformamide connector. 1AZ3BP was self-assembled into a layered superstructure in the bulk state, but 1AZ3BP formed a three-dimensional (3D) network organogel in solution. Upon irradiating UV light onto the 3D network organogel, the solvent of the organogel was squeezed and the 3D network was converted to the layered morphology. It was realized that the metastable 3D network organogels were fabricated mainly due to the nanophase separation in solution. UV isomerization of 1AZ3BP provided sufficient molecular mobility to form strong hydrogen bonds for the construction of the stable layered superstructure. The light-triggered wringing gels can be smartly applied in remote-controlled generators, liquid storages, and sensors
    corecore