378 research outputs found

    Neuronal Control of Swimming Behavior: Comparison of Vertebrate and Invertebrate Model Systems

    Get PDF
    Swimming movements in the leech and lamprey are highly analogous, and lack homology. Thus, similarities in mechanisms must arise from convergent evolution rather than from common ancestry. Despite over 40 years of parallel investigations into this annelid and primitive vertebrate, a close comparison of the approaches and results of this research is lacking. The present review evaluates the neural mechanisms underlying swimming in these two animals and describes the many similarities that provide intriguing examples of convergent evolution. Specifically, we discuss swim initiation, maintenance and termination, isolated nervous system preparations, neural-circuitry, central oscillators, intersegmental coupling, phase lags, cycle periods and sensory feedback. Comparative studies between species highlight mechanisms that optimize behavior and allow us a broader understanding of nervous system function

    A guide to unobtrusive observation

    Get PDF

    Early stages of ramified growth in quasi-two-dimensional electrochemical deposition

    Full text link
    I have measured the early stages of the growth of branched metal aggregates formed by electrochemical deposition in very thin layers. The growth rate of spatial Fourier modes is described qualitatively by the results of a linear stability analysis [D.P. Barkey, R.H. Muller, and C.W. Tobias, J. Electrochem. Soc. {\bf 136}, 2207 (1989)]. The maximum growth rate is proportional to (I/c)δ(I/c)^\delta where II is the current through the electrochemical cell, cc the electrolyte concentration, and δ=1.37±0.08\delta = 1.37 \pm 0.08. Differences between my results and the theoretical predictions suggest that electroconvection in the electrolyte has a large influence on the instability leading to ramified growth.Comment: REVTeX, four ps figure

    Identification of a human ortholog of the mouse Dcpp gene locus, encoding a novel member of the CSP-1/Dcpp salivary protein family

    Get PDF
    Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer towards the Class 0 young stellar object NGC1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic molecule is detected. Local thermodynamic equilibrium analyses of glycolaldehyde, ethylene glycol (the reduced alcohol of glycolaldehyde) and methyl formate (the most abundant isomer of glycolaldehyde) were carried out. The relative abundance of ethylene glycol to glycolaldehyde is found to be ~5 -higher than in the Class 0 source IRAS 16293-2422 (~1), but comparable to the lower limits derived in comets (≥\geq3-6). The different ethylene glycol-to-glycolaldehyde ratios in the two protostars could be related to different CH3OH:CO compositions of the icy grain mantles. In particular, a more efficient hydrogenation on the grains in NGC 1333 IRAS2A would favor the formation of both methanol and ethylene glycol. In conclusion, it is possible that, like NGC 1333 IRAS2A, other low-mass protostars show high ethylene glycol-to-glycolaldehyde abundance ratios. The cometary ratios could consequently be inherited from earlier stages of star formation, if the young Sun experienced conditions similar to NGC1333 IRAS2A.Comment: 11 pages, 5 figures, accepted in A&

    Hypertension in mice lacking 11beta-hydroxysteroid dehydrogenase type 2

    Get PDF
    Deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) in humans leads to the syndrome of apparent mineralocorticoid excess (SAME), in which cortisol illicitly occupies mineralocorticoid receptors, causing sodium retention, hypokalemia, and hypertension. However, the disorder is usually incompletely corrected by suppression of cortisol, suggesting additional and irreversible changes, perhaps in the kidney. To examine this further, we produced mice with targeted disruption of the 11β-HSD2 gene. Homozygous mutant mice (11β-HSD2(–/–)) appear normal at birth, but ∼50% show motor weakness and die within 48 hours. Both male and female survivors are fertile but exhibit hypokalemia, hypotonic polyuria, and apparent mineralocorticoid activity of corticosterone. Young adult 11β-HSD2(–/–) mice are markedly hypertensive, with a mean arterial blood pressure of 146 ± 2 mmHg, compared with 121 ± 2 mmHg in wild-type controls and 114 ± 4 mmHg in heterozygotes. The epithelium of the distal tubule of the nephron shows striking hypertrophy and hyperplasia. These histological changes do not readily reverse with mineralocorticoid receptor antagonism in adulthood. Thus, 11β-HSD2(–/–) mice demonstrate the major features of SAME, providing a unique rodent model to study the molecular mechanisms of kidney resetting leading to hypertension. J. Clin. Invest. 103:683–689 (1999
    • …
    corecore