378 research outputs found
Neuronal Control of Swimming Behavior: Comparison of Vertebrate and Invertebrate Model Systems
Swimming movements in the leech and lamprey are highly analogous, and lack homology. Thus, similarities in mechanisms must arise from convergent evolution rather than from common ancestry. Despite over 40 years of parallel investigations into this annelid and primitive vertebrate, a close comparison of the approaches and results of this research is lacking. The present review evaluates the neural mechanisms underlying swimming in these two animals and describes the many similarities that provide intriguing examples of convergent evolution. Specifically, we discuss swim initiation, maintenance and termination, isolated nervous system preparations, neural-circuitry, central oscillators, intersegmental coupling, phase lags, cycle periods and sensory feedback. Comparative studies between species highlight mechanisms that optimize behavior and allow us a broader understanding of nervous system function
Early stages of ramified growth in quasi-two-dimensional electrochemical deposition
I have measured the early stages of the growth of branched metal aggregates
formed by electrochemical deposition in very thin layers. The growth rate of
spatial Fourier modes is described qualitatively by the results of a linear
stability analysis [D.P. Barkey, R.H. Muller, and C.W. Tobias, J. Electrochem.
Soc. {\bf 136}, 2207 (1989)]. The maximum growth rate is proportional to
where is the current through the electrochemical cell,
the electrolyte concentration, and . Differences
between my results and the theoretical predictions suggest that
electroconvection in the electrolyte has a large influence on the instability
leading to ramified growth.Comment: REVTeX, four ps figure
Identification of a human ortholog of the mouse Dcpp gene locus, encoding a novel member of the CSP-1/Dcpp salivary protein family
Glycolaldehyde is a key molecule in the formation of biologically relevant
molecules such as ribose. We report its detection with the Plateau de Bure
interferometer towards the Class 0 young stellar object NGC1333 IRAS2A, which
is only the second solar-type protostar for which this prebiotic molecule is
detected. Local thermodynamic equilibrium analyses of glycolaldehyde, ethylene
glycol (the reduced alcohol of glycolaldehyde) and methyl formate (the most
abundant isomer of glycolaldehyde) were carried out. The relative abundance of
ethylene glycol to glycolaldehyde is found to be ~5 -higher than in the Class 0
source IRAS 16293-2422 (~1), but comparable to the lower limits derived in
comets (3-6). The different ethylene glycol-to-glycolaldehyde ratios in
the two protostars could be related to different CH3OH:CO compositions of the
icy grain mantles. In particular, a more efficient hydrogenation on the grains
in NGC 1333 IRAS2A would favor the formation of both methanol and ethylene
glycol. In conclusion, it is possible that, like NGC 1333 IRAS2A, other
low-mass protostars show high ethylene glycol-to-glycolaldehyde abundance
ratios. The cometary ratios could consequently be inherited from earlier stages
of star formation, if the young Sun experienced conditions similar to NGC1333
IRAS2A.Comment: 11 pages, 5 figures, accepted in A&
Recommended from our members
LNK suppresses interferon signaling in melanoma.
LNK (SH2B3) is a key negative regulator of JAK-STAT signaling which has been extensively studied in malignant hematopoietic diseases. We found that LNK is significantly elevated in cutaneous melanoma; this elevation is correlated with hyperactive signaling of the RAS-RAF-MEK pathway. Elevated LNK enhances cell growth and survival in adverse conditions. Forced expression of LNK inhibits signaling by interferon-STAT1 and suppresses interferon (IFN) induced cell cycle arrest and cell apoptosis. In contrast, silencing LNK expression by either shRNA or CRISPR-Cas9 potentiates the killing effect of IFN. The IFN-LNK signaling is tightly regulated by a negative feedback mechanism; melanoma cells exposed to IFN upregulate expression of LNK to prevent overactivation of this signaling pathway. Our study reveals an unappreciated function of LNK in melanoma and highlights the critical role of the IFN-STAT1-LNK signaling axis in this potentially devastating disease. LNK may be further explored as a potential therapeutic target for melanoma immunotherapy
Hypertension in mice lacking 11beta-hydroxysteroid dehydrogenase type 2
Deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) in humans leads to the syndrome of apparent mineralocorticoid excess (SAME), in which cortisol illicitly occupies mineralocorticoid receptors, causing sodium retention, hypokalemia, and hypertension. However, the disorder is usually incompletely corrected by suppression of cortisol, suggesting additional and irreversible changes, perhaps in the kidney. To examine this further, we produced mice with targeted disruption of the 11β-HSD2 gene. Homozygous mutant mice (11β-HSD2(–/–)) appear normal at birth, but ∼50% show motor weakness and die within 48 hours. Both male and female survivors are fertile but exhibit hypokalemia, hypotonic polyuria, and apparent mineralocorticoid activity of corticosterone. Young adult 11β-HSD2(–/–) mice are markedly hypertensive, with a mean arterial blood pressure of 146 ± 2 mmHg, compared with 121 ± 2 mmHg in wild-type controls and 114 ± 4 mmHg in heterozygotes. The epithelium of the distal tubule of the nephron shows striking hypertrophy and hyperplasia. These histological changes do not readily reverse with mineralocorticoid receptor antagonism in adulthood. Thus, 11β-HSD2(–/–) mice demonstrate the major features of SAME, providing a unique rodent model to study the molecular mechanisms of kidney resetting leading to hypertension. J. Clin. Invest. 103:683–689 (1999
- …