22 research outputs found

    Effect of Cattle-Specific Diseases on Carcass Inspection and Meat Quality

    Get PDF
    There are severe cattle-specific viral (foot and mouth, vesicular stomatitis, rinderpest, rift valley fever, malignant catarrhal fever, lumpy skin, rabies, bovine leukosis, bovine viral diarrhea, and bovine spongiform encephalopathy), bacterial (tuberculosis, black quarter, botulism, malignant oedema, leptospirosis, brucellosis, anthrax, hemogenic septicemia, actinomycosis, actinobacillosis, mastitis, and metritis), parasitic (lungworm, fasciolosis, cysticercosis, hydatid disease, and onchocercosis), and protozoal (trypanosomiasis, theileriosis, anaplasmosis, babesiosis, and sarcosporidiosis) diseases that affect the carcass judgment and meat quality. These diseases adversely affect cattle health, welfare, and red meat production. This chapter aims to describe the etiology, mode of transmission, ante-mortem and post-mortem findings, carcass and meat quality judgment, and differential diagnosis of these diseases

    Effect of transportation distance and crating density on preslaughter losses and blood biochemical profile in broilers during hot and humid weather

    No full text

    Antioxidant properties of Milk and dairy products: a comprehensive review of the current knowledge

    No full text
    Abstract Milk and dairy products are integral part of human nutrition and they are considered as the carriers of higher biological value proteins, calcium, essential fatty acids, amino acids, fat, water soluble vitamins and several bioactive compounds that are highly significant for several biochemical and physiological functions. In recent years, foods containing natural antioxidants are becoming popular all over the world as antioxidants can neutralize and scavenge the free radicals and their harmful effects, which are continuously produced in the biological body. Uncontrolled free radicals activity can lead to oxidative stresses, which have been implicated in breakdown of vital biochemical compounds such as lipids, protein, DNA which may lead to diabetes, accelerated ageing, carcinogenesis and cardiovascular diseases. Antioxidant capacity of milk and milk products is mainly due to sulfur containing amino acids, such as cysteine, phosphate, vitamins A, E, carotenoids, zinc, selenium, enzyme systems, superoxide dismutase, catalase, glutathione peroxidase, milk oligosaccharides and peptides that are produced during fermentation and cheese ripening. Antioxidant activity of milk and dairy products can be enhanced by phytochemicals supplementation while fermented dairy products have been reported contained higher antioxidant capacity as compared to the non-fermented dairy products. Literature review has shown that milk and dairy products have antioxidant capacity, however, information regarding the antioxidant capacity of milk and dairy products has not been previously compiled. This review briefly describes the nutritional and antioxidant capacity of milk and dairy products

    Influence of Fermentation Time and Storage Conditions on the Physicochemical Properties of Different Yogurt Varieties Using Starter Cultures and Probiotic Lactobacillus rhamnosus GG

    No full text
    Fermented milk products, such as yogurt, undergo significant changes in their physicochemical, sensory, textural, and rheological properties based on fermentation time and storage. This study investigated how different fermentation times (4, 5, 6, 7, and 8 h) and storage durations (1, 7, 14, and 21 days) influenced the characteristics of probiotic yogurt made from sheep milk, cow milk, and a blend of both. Using 2% of each of Lactobacillus rhamnosus GG, Lactobacillus bulgaricus, and Streptococcus thermophilus, fermentation was conducted at 40 °C. The results demonstrated that fermentation time and storage had a significant impact on pH, acidity, total bacterial count (TBC), water-holding capacity (WHC), syneresis, and sensory attributes. Probiotic yogurt made from sheep milk, when fermented for 6 h and stored for 1 day, exhibited the highest acidity (109.42 °T), total bacterial count (TBC) (592.41 × 106 cfu/g), water-holding capacity (WHC) (658.42 g/kg), and sensory score (8.62), with a final pH of 4.25. In contrast, cow milk yogurt, fermented for 5 h and stored for 14 days, had the lowest acidity (81.76 °T), TBC (305.75 × 106 cfu/g), and sensory score (6.24), with a pH of 4.44. The blended yogurt, fermented for 6–7 h and stored for 1 day, showed intermediate values, with an acidity of 89.55 °T, TBC of 284.33 × 106 cfu/g, and a sensory score of 7.24. Syneresis varied from 18.06 to 19.67, with cow milk yogurt, fermented for 6 h and stored for 1 day, exhibiting the highest level. These findings highlight the impact of fermentation time and storage on yogurt quality, with optimized conditions enhancing texture, stability, and sensory appeal. These variations in yogurt properties highlight the critical role of fermentation time and storage conditions in defining texture and stability. Notably, the optimal fermentation times for achieving desirable physicochemical and sensory properties were found to be 6 h for sheep milk yogurt, 5 h for cow milk yogurt, and 6–7 h for the blend. The findings emphasize the importance of milk composition and fermentation conditions in optimizing probiotic yogurt quality. Furthermore, the study underscores the potential of sheep milk in producing yogurt with superior sensory and textural characteristics, offering promising opportunities for the development of high-quality functional dairy products

    Muscle-Specific Effects of Genotype, Animal Age, and Wet Aging Duration on Beef Color, Tenderness, and Sensory Characteristics

    No full text
    This study investigated the effects of genotype, animal age, muscle type, and aging duration on meat quality characteristics of Psoas major (PM), Longissimus thoracis (LT), Longissimus lumborum (LL), and Gluteus Medius (GM) muscles. The PM, LT, LL, and GM muscles were sourced from a total of 32 bulls, consisting of 16 humped (Bos indicus) and 16 humpless (Bos indicus × Bos taurus) bulls aged 21 ± 2 and 30 ± 3 months. The muscles underwent aging durations of 0, 7, and 14 days. Meat pH, color, drip loss, cooking loss, instrumental shear force, lipid oxidation (thiobarbituric acid reactive substances/TBARS), and sensory analysis were performed. Our results indicated that humped bulls had superior color, while humpless bulls exhibited better sensory characteristics. The 30 ± 3 months of age bulls showed improved color and sensory characteristics with higher TBARs values than the 21 ± 2 months of age bulls. The color, tenderness, and sensory characteristics improved in PM and LT at 7 days, whereas in LL and GM they improved at 14 days. PM showed better tenderness and overall acceptability among different muscles, while LL showed better color and oxidative stability. This study suggested the necessity of muscle-specific aging strategies to enhance the meat quality characteristics of humped and humpless bulls. Further research could explore additional aging durations and other muscle types to better understand their impact on meat quality characteristics

    Meat Production and Supply Chain Under COVID-19 Scenario: Current Trends and Future Prospects

    No full text
    The COVID-19 pandemic impacted meat production, supply chain, and meat prices that caused a severe socio-economic crisis worldwide. Initially, meat and meat products' prices increased due to less production and increased demand because of panic buying. Whereas, later on, both meat production and demand were significantly decreased due to lockdown restrictions and lower purchasing power of the consumers that results in a decrease in meat prices. In early April 2020, meat packing facilities started to shut down due to the rapid spread of the COVID-19 virus among workers. Furthermore, meat producers and processors faced difficulty in harvesting and shipment of the products due to lockdown situations, decrease in labor force, restrictions in movement of animals within and across the country and change in legislation of local and international export market. These conditions adversely impacted the meat industry due to decrease in meat production, processing and distribution facilities. It is suggested that the integration among all the meat industry stakeholders is quite essential for the sustainability of the industry's supply chain to cope with such devastating conditions the future may hold. This review aimed to discuss different aspects of the meat industry and supply chain during the COVID-19 pandemic and proposed some future directions.</jats:p
    corecore