58 research outputs found

    Learning Valuation Distributions from Partial Observation

    Full text link
    Auction theory traditionally assumes that bidders' valuation distributions are known to the auctioneer, such as in the celebrated, revenue-optimal Myerson auction. However, this theory does not describe how the auctioneer comes to possess this information. Recently, Cole and Roughgarden [2014] showed that an approximation based on a finite sample of independent draws from each bidder's distribution is sufficient to produce a near-optimal auction. In this work, we consider the problem of learning bidders' valuation distributions from much weaker forms of observations. Specifically, we consider a setting where there is a repeated, sealed-bid auction with nn bidders, but all we observe for each round is who won, but not how much they bid or paid. We can also participate (i.e., submit a bid) ourselves, and observe when we win. From this information, our goal is to (approximately) recover the inherently recoverable part of the underlying bid distributions. We also consider extensions where different subsets of bidders participate in each round, and where bidders' valuations have a common-value component added to their independent private values

    Draft Auctions

    Full text link
    We introduce draft auctions, which is a sequential auction format where at each iteration players bid for the right to buy items at a fixed price. We show that draft auctions offer an exponential improvement in social welfare at equilibrium over sequential item auctions where predetermined items are auctioned at each time step. Specifically, we show that for any subadditive valuation the social welfare at equilibrium is an O(log2(m))O(\log^2(m))-approximation to the optimal social welfare, where mm is the number of items. We also provide tighter approximation results for several subclasses. Our welfare guarantees hold for Bayes-Nash equilibria and for no-regret learning outcomes, via the smooth-mechanism framework. Of independent interest, our techniques show that in a combinatorial auction setting, efficiency guarantees of a mechanism via smoothness for a very restricted class of cardinality valuations, extend with a small degradation, to subadditive valuations, the largest complement-free class of valuations. Variants of draft auctions have been used in practice and have been experimentally shown to outperform other auctions. Our results provide a theoretical justification

    Privacy-Preserving Public Information for Sequential Games

    Full text link
    In settings with incomplete information, players can find it difficult to coordinate to find states with good social welfare. For example, in financial settings, if a collection of financial firms have limited information about each other's strategies, some large number of them may choose the same high-risk investment in hopes of high returns. While this might be acceptable in some cases, the economy can be hurt badly if many firms make investments in the same risky market segment and it fails. One reason why many firms might end up choosing the same segment is that they do not have information about other firms' investments (imperfect information may lead to `bad' game states). Directly reporting all players' investments, however, raises confidentiality concerns for both individuals and institutions. In this paper, we explore whether information about the game-state can be publicly announced in a manner that maintains the privacy of the actions of the players, and still suffices to deter players from reaching bad game-states. We show that in many games of interest, it is possible for players to avoid these bad states with the help of privacy-preserving, publicly-announced information. We model behavior of players in this imperfect information setting in two ways -- greedy and undominated strategic behaviours, and we prove guarantees on social welfare that certain kinds of privacy-preserving information can help attain. Furthermore, we design a counter with improved privacy guarantees under continual observation

    Private Pareto Optimal Exchange

    Full text link
    We consider the problem of implementing an individually rational, asymptotically Pareto optimal allocation in a barter-exchange economy where agents are endowed with goods and have preferences over the goods of others, but may not use money as a medium of exchange. Because one of the most important instantiations of such economies is kidney exchange -- where the "input"to the problem consists of sensitive patient medical records -- we ask to what extent such exchanges can be carried out while providing formal privacy guarantees to the participants. We show that individually rational allocations cannot achieve any non-trivial approximation to Pareto optimality if carried out under the constraint of differential privacy -- or even the relaxation of \emph{joint} differential privacy, under which it is known that asymptotically optimal allocations can be computed in two-sided markets, where there is a distinction between buyers and sellers and we are concerned only with privacy of the buyers~\citep{Matching}. We therefore consider a further relaxation that we call \emph{marginal} differential privacy -- which promises, informally, that the privacy of every agent ii is protected from every other agent jij \neq i so long as jj does not collude or share allocation information with other agents. We show that, under marginal differential privacy, it is possible to compute an individually rational and asymptotically Pareto optimal allocation in such exchange economies