59,448 research outputs found
Recommended from our members
Models for discriminating image blur from loss of contrast
Observers can discriminate between blurry and low-contrast images (Morgan, 2017). Wang and Simoncelli (2004) demonstrated that a code for blur is inherent to the phase relationships between localized pattern detectors of different scale. To test whether human observers actually use local phase coherence when discriminating between image blur and loss of contrast, we compared phase-scrambled chessboards with unscrambled chessboards. Although both stimuli had identical amplitude spectra, local phase coherence was disrupted by phase-scrambling. Human observers were required to concurrently detect and identify (as contrast or blur) image manipulations in the 2x2 forced-choice paradigm (Nachmias & Weber, 1975; Watson & Robson, 1981) traditionally considered to be a litmus test for "labelled lines" (i.e. detection mechanisms that can be distinguished on the basis of their preferred stimuli). Phase scrambling reduced some observers’ ability to discriminate between blur and a reduction in contrast. However, none of our observers produced data consistent with Watson & Robson’s most stringent test for labelled lines, regardless whether phases were scrambled or not. Models of performance fit significantly better when either a) the blur detector also responded to contrast modulations, b) the contrast detector also responded to blur modulations, or c) noise in the two detectors was anticorrelate
Recommended from our members
A visual search asymmetry for novelty in the visual field based on sensory adaptation
The ability to detect sudden changes in the environment is important for survival. However, studies of “change blindness” have shown that image differences are hard to detect when a time delay or a mask is imposed between the different images. However, when sensory adaptation is permitted by accuratefixation, we find that change detection is not only possible but asymmetrical: a single changed target amongst 15 unchanging distractors is much easier to detect than a target defined by its lack of change. Although adaptation may selectively reduce the apparent contrast of unchanged objects, the asymmetry in “change salience” cannot be attributed to any such reduction because genuine reductions in target contrast increase, rather than decrease, target detectability. Analogous results preclude attribution to apparent differences between a) target onset and distractor onset and b) their temporal frequencies (both flickered at 7.5 Hz, minimizing afterimages). Our results demonstrate a hitherto underappreciated (or unappreciated) advantage conferred by low-level sensory adaptation: it automatically elevates the salience of previously absent objects
Gain control of saccadic eye movements is probabilistic
Saccades are rapid eye movements that orient the visual axis toward objects of interest to allow their processing by the central, highacuity retina. Our ability to collect visual information efficiently relies on saccadic accuracy, which is limited by a combination of uncertainty in the location of the target and motor noise. It has been observed that saccades have a systematic tendency to fall short of their intended targets, and it has been suggested that this bias originates from a cost function that overly penalizes hypermetric errors. Here we tested this hypothesis by systematically manipulating the positional uncertainty of saccadic targets. We found that increasing uncertainty produced not only a larger spread of the saccadic endpoints but also more hypometric errors and a systematic bias toward the average of target locations in a given block, revealing that prior knowledge was integrated into saccadic planning. Moreover, by examining how variability and bias co-varied across conditions, we estimated the asymmetry of the cost function and found that it was related to individual differences in the additional time needed to program secondary saccades for correcting hypermetric errors, relative to hypometric ones. Taken together, these findings reveal that the saccadic system uses a probabilistic-Bayesian control strategy to compensate for uncertainty in a statistically principled way and to minimize the expected cost of saccadic errors
Results and comparison of Hall and DW duct experiments
Experimental data from recent tests of a 45 deg diagonal wall duct are presented and compared with the results of a similar Hall duct. It is shown that while the peak power density of the two devices is approximately equal that the diagonal wall duct produces greater total power output due to its ability to better utilize the available magnetic field
Statistical analysis of time transfer data from Timation 2
Between July 1973 and January 1974, three time transfer experiments using the Timation 2 satellite were conducted to measure time differences between the U.S. Naval Observatory and Australia. Statistical tests showed that the results are unaffected by the satellite's position with respect to the sunrise/sunset line or by its closest approach azimuth at the Australian station. Further tests revealed that forward predictions of time scale differences, based on the measurements, can be made with high confidence
Texture control in a pseudospin Bose-Einstein condensate
We describe a wavefunction engineering approach to the formation of textures
in a two-component nonrotated Bose-Einstein condensate. By controlling the
phases of wavepackets that combine in a three-wave interference process, a
ballistically-expanding regular lattice-texture is generated, in which the
phases determine the component textures. A particular example is presented of a
lattice-texture composed of half-quantum vortices and spin-2 textures. We
demonstrate the lattice formation with numerical simulations of a viable
experiment, identifying the textures and relating their locations to a linear
theory of wavepacket interference.Comment: 4 pages, 5 figures, REVTeX4-
Recommended from our members
Organic Geochemistry of a Hydrocarbon-rich Calcarenite from the Chicxulub Scientific Drilling Program
The organic geochemistry of hydrocarbon-rich core material recovered by the CSDP is examined to establish whether hydrocarbons are associated with the migration and emplacement of organic matter by post-impact hydrothermal activity
- …