917 research outputs found

    Doppler tomography of Cataclysmic Variables

    Full text link
    The study of cataclysmic variables (CVs), and in particular of the evolution of their accretion discs throughout their different brightness states, has benefited largely from the use of indirect imaging techniques. I report on the latest results obtained from Doppler tomography of CVs concentrating mainly on results published since the 2000 Astrotomography meeting in Brussels. Emphasis is given to the spiral structures found in the accretion discs of some CVs, to the evolution of these structures throughout quiescence and outburst, and to our search for them in more systems.Comment: 4 pages, 1 figure. Accepted for publication in AN. Proceedings of the Astrotomography Joint Discussion 09 of the IAU General Assembly 2003. Uses an.cl

    Spectral atlas of dwarf novae in outburst

    Get PDF
    Up to now, only a very small number of dwarf novae have been studied during their outburst state (~30 per cent in the Northern hemisphere). In this paper we present the first comprehensive atlas of outburst spectra of dwarf novae. We study possible correlations between the emission and absorption lines seen in the spectra and some fundamental parameters of the binaries. We find that out of the 48 spectra presented, 12 systems apart from IP Peg show strong HeII in emission: SS Aur, HL CMa, TU Crt, EM Cyg, SS Cyg, EX Dra, U Gem, HX Peg, GK Per, KT Per, V893 Sco, IY UMa, and 7 others less prominently: FO And, V542 Cyg, BI Ori, TY Psc, VZ Pyx, ER UMa, and SS UMi. We conclude that these systems are good targets for finding spiral structure in their accretion discs during outburst if models of Smak (2001) and Ogilvie (2001) are correct. This is confirmed by the fact that hints of spiral asymmetries have already been found in the discs of SS Cyg, EX Dra and U Gem.Comment: 16 pages, 14 figures. To be published in MNRA

    Solving the kilo-second QPO problem of the intermediate polar GK Persei

    Get PDF
    We detect the likely optical counterpart to previously reported X-ray QPOs in spectrophotometry of the intermediate polar GK Persei during the 1996 dwarf nova outburst. The characteristic timescales range between 4000--6000 s. Although the QPOs are an order of magnitude longer than those detected in the other dwarf novae we show that a new QPO model is not required to explain the long timescale observed. We demonstrate that the observations are consistent with oscillations being the result of normal-timescale QPOs beating with the spin period of the white dwarf. We determine the spectral class of the companion to be consistent with its quiescent classification and find no significant evidence for irradiation over its inner face. We detect the white dwarf spin period in line fluxes, V/R ratios and Doppler-broadened emission profiles.Comment: 14 pages, 11 figures. Accepted for publication in MNRA
    • …