4 research outputs found

    Toward Safe and Sustainable Batteries: Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> as a Low-Cost Cathode for Rechargeable Aqueous Na-Ion Batteries

    No full text
    The electrochemical properties of Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> in aqueous and organic electrolyte are compared under similar conditions. Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> is able to deliver almost the same capacity in both types of electrolytes despite the smaller electrochemical window entailed by the aqueous one. As shown by electrochemical impedance spectroscopy (EIS), this is possible thanks to the lower overpotential that this material exhibits in aqueous electrolyte. It is shown here that the main contribution to overpotential in organic electrolyte mainly originates from a SPI (Solid Permeable Interphase) layer formed below 3.5 V vs Na<sup>+</sup>/Na that acts as a blocking layer and hinders Na<sup>+</sup> diffusion and that is absent in aqueous electrolyte. Overall, the obtained results highlight the positive attributes of using low-cost and environmentally friendly aqueous electrolytes and the challenges to be overcome in terms of air and moisture stability of the studied material

    Composition and Evolution of the Solid-Electrolyte Interphase in Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> Electrodes for Na-Ion Batteries: XPS and Auger Parameter Analysis

    No full text
    Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> is considered a promising negative electrode for Na-ion batteries; however, poor capacity retention has been reported and the stability of the solid-electrolyte interphase (SEI) could be one of the main actors of this underperformance. The composition and evolution of the SEI in Na<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> electrodes is hereby studied by means of X-ray photoelectron spectroscopy (XPS). To overcome typical XPS limitations in the photoelectron energy assignments, the analysis of the Auger parameter is here proposed for the first time in battery materials characterization. We have found that the electrode/electrolyte interface formed upon discharge, mostly composed by carbonates and semicarbonates (Na<sub>2</sub>CO<sub>3</sub>, NaCO<sub>3</sub>R), fluorides (NaF), chlorides (NaCl) and poly­(ethylene oxide)­s, is unstable upon electrochemical cycling. Additionally, solid state nuclear magnetic resonance (NMR) studies prove the reaction of the polyvinylidene difluoride (PVdF) binder with sodium. The powerful approach used in this work, namely Auger parameter study, enables us to correctly determine the composition of the electrode surface layer without any interference from surface charging or absolute binding energy calibration effects. As a result, the suitability for Na-ion batteries of binders and electrolytes widely used for Li-ion batteries is questioned here

    Facet-Dependent Rock-Salt Reconstruction on the Surface of Layered Oxide Cathodes

    No full text
    The surface configuration of pristine layered oxide cathode particles for Li-ion batteries significantly affects the electrochemical behavior, which is generally considered to be a thin rock-salt layer in the surface. Unfortunately, aside from its thin nature and spatial location on the surface, the true structural nature of this surface rock-salt layer remains largely unknown, creating the need to understand its configuration and the underlying mechanisms of formation. Using scanning transmission electron microscopy, we have found a correlation between the surface rock-salt formation and the crystal facets on pristine LiNi<sub>0.80</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> primary particles. It is found that the originally (014̅) and (003) surfaces of the layered phase result in two kinds of rock-salt reconstructions: the (002) and (111) rock-salt surfaces, respectively. Stepped surface configurations are generated for both reconstructions. The (002) configuration is relatively flat with monatomic steps while the (111) configuration shows significant surface roughening. Both reconstructions reduce the ionic and electronic conductivity of the cathode, leading to a reduced electrochemical performance

    Facet-Dependent Rock-Salt Reconstruction on the Surface of Layered Oxide Cathodes

    No full text
    The surface configuration of pristine layered oxide cathode particles for Li-ion batteries significantly affects the electrochemical behavior, which is generally considered to be a thin rock-salt layer in the surface. Unfortunately, aside from its thin nature and spatial location on the surface, the true structural nature of this surface rock-salt layer remains largely unknown, creating the need to understand its configuration and the underlying mechanisms of formation. Using scanning transmission electron microscopy, we have found a correlation between the surface rock-salt formation and the crystal facets on pristine LiNi<sub>0.80</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> primary particles. It is found that the originally (014̅) and (003) surfaces of the layered phase result in two kinds of rock-salt reconstructions: the (002) and (111) rock-salt surfaces, respectively. Stepped surface configurations are generated for both reconstructions. The (002) configuration is relatively flat with monatomic steps while the (111) configuration shows significant surface roughening. Both reconstructions reduce the ionic and electronic conductivity of the cathode, leading to a reduced electrochemical performance
    corecore