119 research outputs found

    Les bouleversements induits par la guerre civile en Somalie : castes marginales et minorités

    Get PDF
    Par suite de l'incapacité à aboutir à une solution politique au conflit civil qui déchire la société somalienne depuis 1991, une partie importante de la population (waable et ka baxsanayaal bantou), traditionnellement discriminée par les deux grandes classes nobles somali (waranle et wadaad/guerriers et hommes de la connaissance religieuse), accède à une reconnaissance internationale de son statut particulier et en tient comme acquis les principes. On peut considérer qu'on assiste actuellement à un bouleversement de certaines données sociales en Somalie et principalement des faits structurant la nation et la normalité. (Résumé d'auteur

    Ocular Manifestations of Alzheimer's Disease in Animal Models

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia, and the pathological changes of senile plaques (SPs) and neurofibrillary tangles (NFTs) in AD brains are well described. Clinically, a diagnosis remains a postmortem one, hampering both accurate and early diagnosis as well as research into potential new treatments. Visual deficits have long been noted in AD patients, and it is becoming increasingly apparent that histopathological changes already noted in the brain also occur in an extension of the brain; the retina. Due to the optically transparent nature of the eye, it is possible to image the retina at a cellular level noninvasively and thus potentially allow an earlier diagnosis as well as a way of monitoring progression and treatment effects. Transgenic animal models expressing amyloid precursor protein (APP) presenilin (PS) and tau mutations have been used successfully to recapitulate the pathological findings of AD in the brain. This paper will cover the ocular abnormalities that have been detected in these transgenic AD animal models

    Uncovering a neurological protein signature for severe COVID-19

    Get PDF
    Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified. Plasma samples from 49 severe COVID-19 patients, 50 mild COVID-19 patients, and 40 healthy controls were subjected to Olink proteomics analysis of 184 CNS-enriched proteins. By using a multi-approach bioinformatics analysis, we identified a 34-neurological protein signature for COVID-19 severity and unveiled dysregulated neurological pathways in severe cases. Here, we identified a new neurological protein signature for severe COVID-19 that was validated in different independent cohorts using blood and postmortem brain samples and shown to correlate with neurological diseases and pharmacological drugs. This protein signature could potentially aid the development of prognostic and diagnostic tools for neurological complications in post-COVID-19 convalescent patients with long term neurological sequelae

    A Novel Clinically Relevant Strategy to Abrogate Autoimmunity and Regulate Alloimmunity in NOD Mice

    Get PDF
    OBJECTIVE - To investigate a new clinically relevant immunoregulatory strategy based on treatment with murine Thymoglobulin mATG Genzyme and CTLA4-Ig in NOD mice to prevent alloand autoimmune activation using a stringent model of islet transplantation and diabetes reversal. RESEARCH DESIGN AND METHODS - Using allogeneic islet transplantation models as well as NOD mice with recent onset type 1 diabetes, we addressed the therapeutic efficacy and immunomodulatory mechanisms associated with a new immunoregulatory protocol based on prolonged low-dose mATG plus CTLA4-Ig. RESULTS - BALB/c islets transplanted into hyperglycemic NOD mice under prolonged mATG+CTLA4-Ig treatment showed a pronounced delay in allograft rejection compared with untreated mice (mean survival time: 54 vs. 8 days, P < 0.0001). Immunologic analysis of mice receiving transplants revealed a complete abrogation of autoimmune responses and severe downregulation of alloimmunity in response to treatment. The striking effect on autoimmunity was confirmed by 100% diabetes reversal in newly hyperglycemic NOD mice and 100% indefinite survival of syngeneic islet transplantation (NOD.SCID into NOD mice). CONCLUSIONS - The capacity to regulate alloimmunity and to abrogate the autoimmune response in NOD mice in different settings confirmed that prolonged mATG+CTLA4-Ig treatment is a clinically relevant strategy to translate to humans with type 1 diabetes

    Pastoralism and delay in diagnosis of TB in Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculosis (TB) is a major public health problem in the Horn of Africa with Ethiopia being the most affected where TB cases increase at the rate of 2.6% each year. One of the main contributing factors for this rise is increasing transmission due to large number of untreated patients, serving as reservoirs of the infection within the communities. Reduction of the time between onset of TB symptoms to diagnosis is therefore a prerequisite to bring the TB epidemic under control. The aim of this study was to measure duration of delay among pastoralist TB patients at TB management units in Somali Regional State (SRS) of Ethiopia.</p> <p>Methods</p> <p>A cross sectional study of 226 TB patients with pastoralist identity was conducted in SRS of Ethiopia from June to September 2007. Patients were interviewed using questionnaire based interview. Time between onset of TB symptoms and first visit to a professional health care provider (patient delay), and the time between first visits to the professional health care provider to the date of diagnosis (medical provider's delay) were analyzed. Both pulmonary and extrapulmonary TB patients were included in the study.</p> <p>Result</p> <p>A total of 226 pastoralist TB patients were included in this study; 93 (41.2%) were nomadic pastoralists and 133 (58.8%) were agro-pastoralists. Median patient delay was found to be 60 days with range of 10–1800 days (83 days for nomadic pastoralists and 57 days for agro-pastoralists). Median health care provider's delay was 6 days and median total delay was 70 days in this study. Patient delay constituted 86% of the total delay. In multivariate logistic regression analysis, nomadic pastoralism (aOR. 2.69, CI 1.47–4.91) and having low biomedical knowledge on TB (aOR. 2.02, CI 1.02–3.98) were significantly associated with prolonged patient delay. However, the only observed risk factor for very long patient delay >120 days was distance to health facility (aOR.4.23, CI 1.32–13.54). Extra-pulmonary TB was the only observed predictor for health care providers' delay (aOR. 3.39, CI 1.68–6.83).</p> <p>Conclusion</p> <p>Patient delay observed among pastoralist TB patients in SRS is one of the highest reported so far from developing countries, exceeding two years in some patients. This long patient delay appears to be associated with patient's inadequate knowledge of the disease and distance to health care facility with nomadic pastoralists being the most affected. Regional TB control programmes need to consider the exceptional circumstances of pastoralists, to maximise their access to TB services.</p

    Honey, a Gift from Nature to Health and Beauty: A Review

    Get PDF
    Benefits of honey are contributed by the composition of its elements such as glucose, fructose, glucose oxidase, vitamins and phenolic compounds. For health, honey can be used to treat wounds due to the antibacterial activity conferred by the hydrogen peroxide produced by glucose oxidase in honey. Anti-inflammatory, anti-oxidant, deodorizing and tissue regeneration activities in honey also help in the wound healing process. It can also be an alternative sweetener for diabetic patients to ensure compliance to a healthy diet. Moreover, honey exerts several effects such as lowering low density lipids and increasing high density lipids, thus reducing risk of atherosclerosis. In terms of beauty, honey can be used on skin and hair. It moisturizes skin through its natural humectant properties contributed by high contents of fructose and glucose. Honey treats acne on the skin due to its antibacterial activity, anti-inflammatory action and tissue repair. The hair can benefit from honey in such a way that the hair has abundance, and becomes easier to comb. However, there have not been as many studies regarding the use of honey in skin in comparison to its use for health. Therefore, future studies on honey could research its use, action and benefits in both cosmetics and dermatology

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021:a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundUnderstanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021.MethodsThe GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws.FindingsAmong the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP).InterpretationSubstantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions.FundingBill &amp; Melinda Gates Foundation.<br/

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions. Funding: Bill & Melinda Gates Foundation

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950.Background Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories.Background Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories
    corecore