993 research outputs found

    Structure and spectral features of H+(H2O)(7): Eigen versus Zundel forms

    Get PDF
    The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H+(H2O)(7). For H+(H2O)(7) the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Moller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H+(H2O)(7) [though nearly isoenergetic to the 3D structure for D+(D2O)(7)]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments. (c) 2006 American Institute of Physics.open353

    Coupled-Trajectory Quantum-Classical Approach to Electronic Decoherence in Nonadiabatic Processes

    Get PDF
    We present a novel quantum-classical approach to nonadiabatic dynamics, deduced from the coupled electronic and nuclear equations in the framework of the exact factorization of the electron-nuclear wave function. The method is based on the quasiclassical interpretation of the nuclear wave function, whose phase is related to the classical momentum and whose density is represented in terms of classical trajectories. In this approximation, electronic decoherence is naturally induced as an effect of the coupling to the nuclei and correctly reproduces the expected quantum behavior. Moreover, the splitting of the nuclear wave packet is captured as a consequence of the correct approximation of the time-dependent potential of the theory. This new approach offers a clear improvement over Ehrenfest-like dynamics. The theoretical derivation presented in this Letter is supported by numerical results that are compared to quantum mechanical calculations.open2

    An Annular Array MPT for Enhanced Generation of Omnidirectional SH Waves in a Plate

    Get PDF
    If guided wave transducers are fabricated in an annular array type, the excitation and measurement of target guided wave modes could be considerably enhanced (see, e.g., [1]). Accordingly, various annular array transducers have been developed, including those generating omnidirectional Lamb waves in a plate. Here, we newly consider an annular array type MPT (magnetostrictive patch transducer) to generate enhanced SH (shear-horizontal) waves in a plate. This annular array MPT is based on our earlier development of an omnidirectional SH wave MPT [2]. For wave field analysis by the annular array SH wave MPT, the strain response in a plate due to wave excitation by the MPT is calculated by using the Green’s function approach [3]. Using the analysis, an optimal configuration of the annular array MPT which can maximize the transducer output at the given frequency is determined. For the validation of numerical predictions, a series of experiments with varying frequencies were carried out and the numerical results were found to be in good agreement with the experimental results

    Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial

    Get PDF
    Mechanical metamaterials exhibit unusual properties, such as negative Poisson???s ratio, which are difficult to achieve in conventional materials. Rational design of mechanical metamaterials at the microscale is becoming popular partly because of the advance in three-dimensional printing technologies. However, incorporating movable building blocks inside solids, thereby enabling us to manipulate mechanical movement at the molecular scale, has been a difficult task. Here, we report a metal-organic framework, self-assembled from a porphyrin linker and a new type of Zn-based secondary building unit, serving as a joint in a hinged cube tessellation. Detailed structural analysis and theoretical calculation show that this material is a mechanical metamaterial exhibiting auxetic behavior. This work demonstrates that the topology of the framework and flexible hinges inside the structure are intimately related to the mechanical properties of the material, providing a guideline for the rational design of mechanically responsive metal-organic frameworks

    Efficient electron dynamics with the planewave-based real-time time-dependent density functional theory: Absorption spectra, vibronic electronic spectra, and coupled electron-nucleus dynamics

    Get PDF
    The electron dynamics with complex third-order Suzuki-Trotter propagator (ST(3)) has been implemented into a planewave (PW) based density functional theory program, and several applications including linear absorption spectra and coupled electron-nucleus dynamics have been calculated. Since the ST(3) reduces the number of Fourier transforms to less than half compared to the fourth-order Suzuki-Trotter propagator (ST(4)), more than twice faster calculations are possible by exploiting the ST(3). We analyzed numerical errors of both the ST(3) and the ST(4) in the presence/absence of an external field for several molecules such as Al(2), N(2), and C(2)H(4). We obtained that the ST(3) gives the same order of numerical errors (10(-5) Ry after 100 fs) as the ST(4). Also, the time evolution of dipole moments, hence the absorption spectrum, is equivalent for both ST(3) and ST(4). As applications, the linear absorption spectrum for an ethylene molecule was studied. From the density difference analysis, we showed that the absorption peaks at 6.10 eV and 7.65 eV correspond to the pi -> 4a(g) and pi -> pi* excitation bands, respectively. We also investigated the molecular vibrational effect to the absorption spectra of an ethylene molecule and the dynamics of a hydrogen molecule after the sigma -> sigma* transition by formulating coupled electron-nucleus dynamics within the Ehrenfest regime. The trajectory of nuclei follows the excited state potential energy curve exactly. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3671952close

    Impact of solvation on the photoisomerisation dynamics of a photon-only rotary molecular motor

    Get PDF
    The optimization of the quantum efficiency of single-molecule light-driven rotary motors typically relies on chemical modifications. While, in isolated conditions, computational methods have been frequently used to design more efficient motors, the role played by the solvent environment has not been satisfactorily investigated. In this study, we used multiscale nonadiabatic molecular dynamics simulations of the working cycle of a 2-stroke photon-only molecular rotary motor. The results, which display dynamics consistent with the available transient spectroscopy measurements, predict a considerable decrease in the isomerisation quantum efficiency in methanol solution with respect to the gas phase. The origin of such a decrease is traced back to the ability of the motor to establish hydrogen bonds with solvent molecules. The analysis suggests that a modified motor with a reduced ability to form hydrogen bonds will display increased quantum efficiency, therefore extending the set of engineering rules available for designing light-driven rotary motors.Increasing the rotational efficiency of single-molecule light-driven rotary motors often relies on chemical modifications aimed at eliminating the factors that hinder rotation. Using multiscale nonadiabatic simulations, the authors investigate the transient conformations assumed by the motor molecule during its operation in a solvent and examine possibilities for enhancing the motor's efficiency by blocking certain solvent-solute interactions that restrain successful completion of the rotational movement

    Hydrated copper and gold monovalent cations: Ab initio study

    Get PDF
    To understand the hydration phenomena of noble transition metals, we investigated the structures, hydration energies, electronic properties, and spectra of the Cu+(H3O)(1-6) and Au+ (H2O)(1-6) clusters using ab initio calculations. The coordination numbers of these clusters are found to be only two, which is highly contrasted to those of Ag+ (H2O)(n) (which have the coordination numbers of 3-4) as well as the hydrated alkali metal ions (which have the coordination numbers of similar to6). For the possible identification of their interesting hydration structures, we predict their IR spectra for the OH stretch modes. (C) 2005 American Institute of Physics.open384

    Rare cause of granulomatous enteritis

    Get PDF
    corecore