10 research outputs found
Artificial Amino Acids in Nickel(II) and Nickel(II)/Lanthanide(III) Chemistry
The synthesis and magnetic properties of five new homo- and heterometallic nickel(II) complexes containing artificial amino acids are reported: [Ni4(aib)3(aibH)3(NO3)](NO3)4·3.05MeOH (1·3.05MeOH), [Ni6La(aib)12](NO3)3·5.5H2O (2·5.5H2O), [Ni6Pr(aib)12](NO3)3·5.5H2O (3·5.5H2O), [Ni5(OH)2(l-aba)4(OAc)4]·0.4EtOH·0.3H2O 6(4·0.4EtOH·0.3H2O), and [Ni6La(l-aba)12][La2(NO3)9] (5; aibH = 2-aminoisobutyric acid; l-abaH = l-2-aminobutyric acid). Complexes 1 and 4 describe trigonal-pyramidal and square-based pyramidal metallic clusters, respectively, while complexes 2, 3, and 5 can be considered to be metallocryptand-encapsulated lanthanides. Complexes 4 and 5 are chiral and crystallize in the space groups I222 and P213, respectively. Direct-current magnetic susceptibility studies in the 2–300 K range for all complexes reveal the presence of dominant antiferromagnetic exchange interactions, leading to small or diamagnetic ground states
New members of the [Mn<sub>6</sub>/oxime] family and analogues with converging [Mn<sub>3</sub>] planes
<p>The synthesis, structural, and magnetic characterization of five new members of the hexanuclear oximate [Mn<sup>III</sup><sub>6</sub>] family are reported. All five clusters can be described with the general formula [Mn<sup>III</sup><sub>6</sub>O<sub>2</sub>(R-sao)<sub>6</sub>(R′-CO<sub>2</sub>)<sub>2</sub>(sol)<sub>x</sub>(H<sub>2</sub>O)<sub>y</sub>] (where R-saoH<sub>2</sub> = salicylaldoxime substituted at the oxime carbon with R = H, Me and Et; R′ = 1-naphthalene, 2-naphthalene, and 1-pyrene; sol = MeOH, EtOH, or MeCN; <i>x</i> = 0–4 and <i>y</i> = 0–4). More specifically, the reaction of Mn(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O with salicylaldoxime-like ligands and the appropriate carboxylic acid in alcoholic or MeCN solutions in the presence of base afforded complexes <b>1</b>–<b>5</b>: [Mn<sub>6</sub>O<sub>2</sub>(Me-sao)<sub>6</sub>(1-naphth-CO<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)(MeCN)]·4MeCN (<b>1</b>·4MeCN); [Mn<sub>6</sub>O<sub>2</sub>(Me-sao)<sub>6</sub>(2-naphth-CO<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)(MeCN)]·3MeCN·0.1H<sub>2</sub>O (<b>2</b>·3MeCN·0.1H<sub>2</sub>O); [Mn<sub>6</sub>O<sub>2</sub>(Et-sao)<sub>6</sub>(2-naphth-CO<sub>2</sub>)<sub>2</sub>(EtOH)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>] (<b>3</b>); [Mn<sub>6</sub>O<sub>2</sub>(Et-sao)<sub>6</sub>(2-naphth-CO<sub>2</sub>)<sub>2</sub>(MeOH)<sub>6</sub>] (<b>4</b>) and [Mn<sub>6</sub>O<sub>2</sub>(sao)<sub>6</sub>(1-pyrene-CO<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(EtOH)<sub>2</sub>]·6EtOH (<b>5</b>·6EtOH). Clusters <b>3</b>, <b>4,</b> and <b>5</b> display the usual [Mn<sub>6</sub>/oximate] structural motif consisting of two [Mn<sub>3</sub>O] subunits bridged by two O<sub>oximate</sub> atoms from two R-sao<sup>2−</sup> ligands to form the hexanuclear complex in which the two triangular [Mn<sub>3</sub>] units are parallel to each other. On the contrary, clusters <b>1</b> and <b>2</b> display a highly distorted stacking arrangement of the two [Mn<sub>3</sub>] subunits resulting in two converging planes, forming a novel motif in the [Mn<sub>6</sub>] family. Investigation of the magnetic properties for all complexes reveal dominant antiferromagnetic interactions for <b>1</b>, <b>2,</b> and <b>5</b>, while <b>3</b> and <b>4</b> display dominant ferromagnetic interactions with a ground state of <i>S</i> = 12 for both clusters. Finally, <b>3</b> and <b>4</b> display single-molecule magnet behavior with <i>U</i><sub>eff</sub> = 63 and 36 K, respectively.</p
Enneanuclear [Ni<sub>6</sub>Ln<sub>3</sub>] Cages: [Ln<sup>III</sup><sub>3</sub>] Triangles Capping [Ni<sup>II</sup><sub>6</sub>] Trigonal Prisms Including a [Ni<sub>6</sub>Dy<sub>3</sub>] Single-Molecule Magnet
The use of (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol)
ligand, H<sub>3</sub>L, in Ni/Ln chemistry has led to the isolation
of three new isostructural [Ni<sup>II</sup><sub>6</sub>Ln<sup>III</sup><sub>3</sub>] metallic cages. More specifically, the reaction of
Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O, the corresponding
lanthanide nitrate salt, and H<sub>3</sub>L in MeCN, under solvothermal
conditions in the presence of NEt<sub>3</sub>, led to the isolation
of three complexes with the formulas [Ni<sub>6</sub>Gd<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O (<b>1</b>·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O), [Ni<sub>6</sub>Dy<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·2MeCN·2.7Et<sub>2</sub>O·2.4H<sub>2</sub>O (<b>2</b>·2MeCN·2.7Et<sub>2</sub>O·2.4H<sub>2</sub>O), and [Ni<sub>6</sub>Er<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O (<b>3</b>·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O). The structure of all three clusters
describes a [Ln<sup>III</sup><sub>3</sub>] triangle capping a [Ni<sup>II</sup><sub>6</sub>] trigonal prism. Direct current magnetic susceptibility
studies in the 5–300 K range for complexes <b>1</b>–<b>3</b> reveal the different nature of the magnetic interactions
within the clusters: dominant antiferromagnetic exchange interactions
for the Dy<sup>III</sup> and Er<sup>III</sup> analogues and dominant
ferromagnetic interactions for the Gd<sup>III</sup> example. Alternating
current magnetic susceptibility measurements under zero external dc
field displayed fully formed temperature- and frequency-dependent
out-of-phase peaks for the [Ni<sup>II</sup><sub>6</sub>Dy<sup>III</sup><sub>3</sub>] analogue, establishing its single molecule magnetism
behavior with <i>U</i><sub>eff</sub> = 24 K
Enneanuclear [Ni<sub>6</sub>Ln<sub>3</sub>] Cages: [Ln<sup>III</sup><sub>3</sub>] Triangles Capping [Ni<sup>II</sup><sub>6</sub>] Trigonal Prisms Including a [Ni<sub>6</sub>Dy<sub>3</sub>] Single-Molecule Magnet
The use of (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol)
ligand, H<sub>3</sub>L, in Ni/Ln chemistry has led to the isolation
of three new isostructural [Ni<sup>II</sup><sub>6</sub>Ln<sup>III</sup><sub>3</sub>] metallic cages. More specifically, the reaction of
Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O, the corresponding
lanthanide nitrate salt, and H<sub>3</sub>L in MeCN, under solvothermal
conditions in the presence of NEt<sub>3</sub>, led to the isolation
of three complexes with the formulas [Ni<sub>6</sub>Gd<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O (<b>1</b>·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O), [Ni<sub>6</sub>Dy<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·2MeCN·2.7Et<sub>2</sub>O·2.4H<sub>2</sub>O (<b>2</b>·2MeCN·2.7Et<sub>2</sub>O·2.4H<sub>2</sub>O), and [Ni<sub>6</sub>Er<sub>3</sub>(OH)<sub>6</sub>(HL)<sub>6</sub>(NO<sub>3</sub>)<sub>3</sub>]·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O (<b>3</b>·5.75MeCN·2Et<sub>2</sub>O·1.5H<sub>2</sub>O). The structure of all three clusters
describes a [Ln<sup>III</sup><sub>3</sub>] triangle capping a [Ni<sup>II</sup><sub>6</sub>] trigonal prism. Direct current magnetic susceptibility
studies in the 5–300 K range for complexes <b>1</b>–<b>3</b> reveal the different nature of the magnetic interactions
within the clusters: dominant antiferromagnetic exchange interactions
for the Dy<sup>III</sup> and Er<sup>III</sup> analogues and dominant
ferromagnetic interactions for the Gd<sup>III</sup> example. Alternating
current magnetic susceptibility measurements under zero external dc
field displayed fully formed temperature- and frequency-dependent
out-of-phase peaks for the [Ni<sup>II</sup><sub>6</sub>Dy<sup>III</sup><sub>3</sub>] analogue, establishing its single molecule magnetism
behavior with <i>U</i><sub>eff</sub> = 24 K
2-Aminoisobutyric Acid in Co(II) and Co(II)/Ln(III) Chemistry: Homometallic and Heterometallic Clusters
The synthesis and magnetic properties of 13 new homo-
and heterometallic
Co(II) complexes containing the artificial amino acid 2-amino-isobutyric
acid, aibH, are reported: [Co<sup>II</sup><sub>4</sub>(aib)<sub>3</sub>(aibH)<sub>3</sub>(NO<sub>3</sub>)](NO<sub>3</sub>)<sub>4</sub>·2.8CH<sub>3</sub>OH·0.2H<sub>2</sub>O (<b>1</b>·2.8CH<sub>3</sub>OH·0.2H<sub>2</sub>O), {Na<sub>2</sub>[Co<sup>II</sup><sub>2</sub>(aib)<sub>2</sub>(N<sub>3</sub>)<sub>4</sub>(CH<sub>3</sub>OH)<sub>4</sub>]}<sub><i>n</i></sub> (<b>2</b>), [Co<sup>II</sup><sub>6</sub>La<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·0.5[La(NO<sub>3</sub>)<sub>6</sub>]·0.75(ClO<sub>4</sub>)·1.75(NO<sub>3</sub>)·3.2CH<sub>3</sub>CN·5.9H<sub>2</sub>O (<b>3</b>·3.2CH<sub>3</sub>CN·5.9H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Pr<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·[Pr(NO<sub>3</sub>)<sub>5</sub>]·0.41[Pr(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>1.5</sub>]·0.59[Co(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.2(ClO<sub>4</sub>)·0.25H<sub>2</sub>O (<b>4</b>·0.25H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Nd<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2.8</sub>(CH<sub>3</sub>OH)<sub>4.7</sub>(H<sub>2</sub>O)<sub>1.5</sub>]·2.7(ClO<sub>4</sub>)·0.5(NO<sub>3</sub>)·2.26CH<sub>3</sub>OH·0.24H<sub>2</sub>O (<b>5</b>·2.26CH<sub>3</sub>OH·0.24H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Sm<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·[Sm(NO<sub>3</sub>)<sub>5</sub>]·0.44[Sm(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>1.5</sub>]·0.56[Co(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.22(ClO<sub>4</sub>)·0.3H<sub>2</sub>O (<b>6</b>·0.3H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Eu<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>OH)<sub>4.87</sub>(H<sub>2</sub>O)<sub>1.13</sub>](ClO<sub>4</sub>)<sub>2.5</sub>(NO<sub>3</sub>)<sub>0.5</sub>·2.43CH<sub>3</sub>OH·0.92H<sub>2</sub>O (<b>7</b>·2.43CH<sub>3</sub>OH·0.92H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Gd<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2.9</sub>(CH<sub>3</sub>OH)<sub>4.9</sub>(H<sub>2</sub>O)<sub>1.2</sub>]·2.6(ClO<sub>4</sub>)·0.5(NO<sub>3</sub>)·2.58CH<sub>3</sub>OH·0.47H<sub>2</sub>O (<b>8</b>·2.58CH<sub>3</sub>OH·0.47H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Tb<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·[Tb(NO<sub>3</sub>)<sub>5</sub>]·0.034[Tb(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>0.5</sub>]·0.656[Co(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.343(ClO<sub>4</sub>)·0.3H<sub>2</sub>O (<b>9</b>·0.3H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Dy<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2.9</sub>(CH<sub>3</sub>OH)<sub>4.92</sub>(H<sub>2</sub>O)<sub>1.18</sub>](ClO<sub>4</sub>)<sub>2.6</sub>(NO<sub>3</sub>)<sub>0.5</sub>·2.5CH<sub>3</sub>OH·0.5H<sub>2</sub>O (<b>10</b>·2.5CH<sub>3</sub>OH·0.5H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Ho<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·0.27[Ho(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.35</sub>(H<sub>2</sub>O)<sub>0.15</sub>]·0.656[Co(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.171(ClO<sub>4</sub>) (<b>11</b>), [Co<sup>II</sup><sub>6</sub>Er<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2.5</sub>(H<sub>2</sub>O)<sub>3.5</sub>](ClO<sub>4</sub>)<sub>3</sub>·CH<sub>3</sub>CN·0.75H<sub>2</sub>O (<b>12</b>·CH<sub>3</sub>CN·0.75H<sub>2</sub>O), and [Co<sup>II</sup><sub>6</sub>Tm<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)<sub>6</sub>]·1.48(ClO<sub>4</sub>)·1.52(NO<sub>3</sub>)·3H<sub>2</sub>O (<b>13</b>·3H<sub>2</sub>O). Complex <b>1</b> describes a distorted
tetrahedral metallic cluster, while complex <b>2</b> can be
considered to be a 2-D coordination polymer. Complexes <b>3</b>–<b>13</b> can all be regarded as metallo-cryptand encapsulated
lanthanides in which the central lanthanide ion is captivated within
a [Co<sup>II</sup><sub>6</sub>] trigonal prism. dc and ac magnetic
susceptibility studies have been carried out in the 2–300 K
range for complexes <b>1</b>, <b>3</b>, <b>5</b>, <b>7</b>, <b>8</b>, <b>10</b>,<b> 12</b>, and <b>13</b>, revealing the possibility of single molecule
magnetism behavior for complex <b>10</b>
Heptanuclear Heterometallic [Cu<sub>6</sub>Ln] Clusters: Trapping Lanthanides into Copper Cages with Artificial Amino Acids
Employment of the artificial amino acid 2-amino-isobutyric
acid,
aibH, in CuII and CuII/LnIII chemistry
led to the isolation and characterization of 12 new heterometallic
heptanuclear [Cu6Ln(aib)6(OH)3(OAc)3(NO3)3] complexes consisting of trivalent
lanthanide centers within a hexanuclear copper trigonal prism (aibH
= 2-amino-butyric acid; Ln = Ce (1), Pr (2), Nd (3), Sm (4), Eu (5),
Gd (6), Tb (7), Dy (8), Ho
(9), Er (10), Tm (11), and
Yb (12)). Direct curent magnetic susceptibility studies
have been carried out in the 5–300 K range for all complexes,
revealing the different nature of the magnetic interactions between
the 3d–4f metallic pairs: dominant antiferromagnetic interactions
for the majority of the pairs and dominant ferromagnetic interactions
for when the lanthanide center is GdIII and DyIII. Furthermore, alternating current magnetic susceptibility studies
reveal the possibility of single-molecule magnetism behavior for complexes 7 and 8. Finally, complexes 2, 5–8, 10, and 12 were analyzed using positive ion electrospray mass spectrometry
(ES-MS), establishing the structural integrity of the heterometallic
heptanuclear cage structure in acetonitrile
2-Aminoisobutyric Acid in Co(II) and Co(II)/Ln(III) Chemistry: Homometallic and Heterometallic Clusters
The synthesis and magnetic properties of 13 new homo-
and heterometallic
Co(II) complexes containing the artificial amino acid 2-amino-isobutyric
acid, aibH, are reported: [Co<sup>II</sup><sub>4</sub>(aib)<sub>3</sub>(aibH)<sub>3</sub>(NO<sub>3</sub>)](NO<sub>3</sub>)<sub>4</sub>·2.8CH<sub>3</sub>OH·0.2H<sub>2</sub>O (<b>1</b>·2.8CH<sub>3</sub>OH·0.2H<sub>2</sub>O), {Na<sub>2</sub>[Co<sup>II</sup><sub>2</sub>(aib)<sub>2</sub>(N<sub>3</sub>)<sub>4</sub>(CH<sub>3</sub>OH)<sub>4</sub>]}<sub><i>n</i></sub> (<b>2</b>), [Co<sup>II</sup><sub>6</sub>La<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·0.5[La(NO<sub>3</sub>)<sub>6</sub>]·0.75(ClO<sub>4</sub>)·1.75(NO<sub>3</sub>)·3.2CH<sub>3</sub>CN·5.9H<sub>2</sub>O (<b>3</b>·3.2CH<sub>3</sub>CN·5.9H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Pr<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·[Pr(NO<sub>3</sub>)<sub>5</sub>]·0.41[Pr(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>1.5</sub>]·0.59[Co(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.2(ClO<sub>4</sub>)·0.25H<sub>2</sub>O (<b>4</b>·0.25H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Nd<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2.8</sub>(CH<sub>3</sub>OH)<sub>4.7</sub>(H<sub>2</sub>O)<sub>1.5</sub>]·2.7(ClO<sub>4</sub>)·0.5(NO<sub>3</sub>)·2.26CH<sub>3</sub>OH·0.24H<sub>2</sub>O (<b>5</b>·2.26CH<sub>3</sub>OH·0.24H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Sm<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·[Sm(NO<sub>3</sub>)<sub>5</sub>]·0.44[Sm(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>1.5</sub>]·0.56[Co(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.22(ClO<sub>4</sub>)·0.3H<sub>2</sub>O (<b>6</b>·0.3H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Eu<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>OH)<sub>4.87</sub>(H<sub>2</sub>O)<sub>1.13</sub>](ClO<sub>4</sub>)<sub>2.5</sub>(NO<sub>3</sub>)<sub>0.5</sub>·2.43CH<sub>3</sub>OH·0.92H<sub>2</sub>O (<b>7</b>·2.43CH<sub>3</sub>OH·0.92H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Gd<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2.9</sub>(CH<sub>3</sub>OH)<sub>4.9</sub>(H<sub>2</sub>O)<sub>1.2</sub>]·2.6(ClO<sub>4</sub>)·0.5(NO<sub>3</sub>)·2.58CH<sub>3</sub>OH·0.47H<sub>2</sub>O (<b>8</b>·2.58CH<sub>3</sub>OH·0.47H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Tb<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·[Tb(NO<sub>3</sub>)<sub>5</sub>]·0.034[Tb(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.5</sub>(H<sub>2</sub>O)<sub>0.5</sub>]·0.656[Co(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.343(ClO<sub>4</sub>)·0.3H<sub>2</sub>O (<b>9</b>·0.3H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Dy<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>2.9</sub>(CH<sub>3</sub>OH)<sub>4.92</sub>(H<sub>2</sub>O)<sub>1.18</sub>](ClO<sub>4</sub>)<sub>2.6</sub>(NO<sub>3</sub>)<sub>0.5</sub>·2.5CH<sub>3</sub>OH·0.5H<sub>2</sub>O (<b>10</b>·2.5CH<sub>3</sub>OH·0.5H<sub>2</sub>O), [Co<sup>II</sup><sub>6</sub>Ho<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>CN)<sub>6</sub>]·0.27[Ho(NO<sub>3</sub>)<sub>3</sub>(ClO<sub>4</sub>)<sub>0.35</sub>(H<sub>2</sub>O)<sub>0.15</sub>]·0.656[Co(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)]·0.171(ClO<sub>4</sub>) (<b>11</b>), [Co<sup>II</sup><sub>6</sub>Er<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2.5</sub>(H<sub>2</sub>O)<sub>3.5</sub>](ClO<sub>4</sub>)<sub>3</sub>·CH<sub>3</sub>CN·0.75H<sub>2</sub>O (<b>12</b>·CH<sub>3</sub>CN·0.75H<sub>2</sub>O), and [Co<sup>II</sup><sub>6</sub>Tm<sup>III</sup>(aib)<sub>6</sub>(OH)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)<sub>6</sub>]·1.48(ClO<sub>4</sub>)·1.52(NO<sub>3</sub>)·3H<sub>2</sub>O (<b>13</b>·3H<sub>2</sub>O). Complex <b>1</b> describes a distorted
tetrahedral metallic cluster, while complex <b>2</b> can be
considered to be a 2-D coordination polymer. Complexes <b>3</b>–<b>13</b> can all be regarded as metallo-cryptand encapsulated
lanthanides in which the central lanthanide ion is captivated within
a [Co<sup>II</sup><sub>6</sub>] trigonal prism. dc and ac magnetic
susceptibility studies have been carried out in the 2–300 K
range for complexes <b>1</b>, <b>3</b>, <b>5</b>, <b>7</b>, <b>8</b>, <b>10</b>,<b> 12</b>, and <b>13</b>, revealing the possibility of single molecule
magnetism behavior for complex <b>10</b>
Heptanuclear Heterometallic [Cu<sub>6</sub>Ln] Clusters: Trapping Lanthanides into Copper Cages with Artificial Amino Acids
Employment of the artificial amino acid 2-amino-isobutyric
acid,
aibH, in Cu<sup>II</sup> and Cu<sup>II</sup>/Ln<sup>III</sup> chemistry
led to the isolation and characterization of 12 new heterometallic
heptanuclear [Cu<sub>6</sub>Ln(aib)<sub>6</sub>(OH)<sub>3</sub>(OAc)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub>] complexes consisting of trivalent
lanthanide centers within a hexanuclear copper trigonal prism (aibH
= 2-amino-butyric acid; Ln = Ce (<b>1</b>), Pr (<b>2</b>), Nd (<b>3</b>), Sm (<b>4</b>), Eu (<b>5</b>),
Gd (<b>6</b>), Tb (<b>7</b>), Dy (<b>8</b>), Ho
(<b>9</b>), Er (<b>10</b>), Tm (<b>11</b>), and
Yb (<b>12</b>)). Direct curent magnetic susceptibility studies
have been carried out in the 5–300 K range for all complexes,
revealing the different nature of the magnetic interactions between
the 3d–4f metallic pairs: dominant antiferromagnetic interactions
for the majority of the pairs and dominant ferromagnetic interactions
for when the lanthanide center is Gd<sup>III</sup> and Dy<sup>III</sup>. Furthermore, alternating current magnetic susceptibility studies
reveal the possibility of single-molecule magnetism behavior for complexes <b>7</b> and <b>8</b>. Finally, complexes <b>2</b>, <b>5</b>–<b>8</b>, <b>10</b>, and <b>12</b> were analyzed using positive ion electrospray mass spectrometry
(ES-MS), establishing the structural integrity of the heterometallic
heptanuclear cage structure in acetonitrile
