5,115 research outputs found

    Heat transfer in the tip region of a rotor blade simulator

    Get PDF
    The measurement of mass transfer from cavities is discussed with emphasis on the effect of cavity orientations relative to the main flow direction. A finite difference computation for turbulent air flow and heat transfer over a two-dimensional shrouded rectangular cavity is discussed

    Jet array impingement flow distributions and heat transfer characteristics: Effects of initial crossflow and nonuniform array geometry

    Get PDF
    Flow distributions and heat transfer characteristics for two-dimensional arrays of circular air jets impinging on a surface parallel to the jet orifice plate were determined. The configurations considered were intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The geometry of the airfoil applications considered dictates that all of the jet flow, after impingement, exit in the chordwise (i.e., streamwise) direction toward the trailing edge. Experimental results for the effect of an initial crossflow on both flow distributions and heat transfer characteristics for a number of the prior uniform array geometries. The effects of nonuniform array geometries on flow distributions and heat transfer characteristics for noninitial crossflow configurations are discussed

    Heat transfer in the tip region of a rotor blade simulator

    Get PDF
    The objective of this study of heat transfer in the tip region of a rotor blade simulator is to acquire, through experimental and computational approaches, improved understanding of the nature of the flow and convective heat transfer in the blade tip region. Such information should enable designers to make more accurate predictions of performance and durability, and should support the future development of improved blade tip cooling schemes

    Heat transfer characteristics of arc tunnel constrictors

    Get PDF
    Arc tunnel constrictor designed to tolerate heat flux up to 12,000 Bt

    Relativistic Jets and Long-Duration Gamma-ray Bursts from the Birth of Magnetars

    Full text link
    We present time-dependent axisymmetric magnetohydrodynamic simulations of the interaction of a relativistic magnetized wind produced by a proto-magnetar with a surrounding stellar envelope, in the first ∼10\sim 10 seconds after core collapse. We inject a super-magnetosonic wind with E˙=1051\dot E = 10^{51} ergs s−1^{-1} into a cavity created by an outgoing supernova shock. A strong toroidal magnetic field builds up in the bubble of plasma and magnetic field that is at first inertially confined by the progenitor star. This drives a jet out along the polar axis of the star, even though the star and the magnetar wind are each spherically symmetric. The jet has the properties needed to produce a long-duration gamma-ray burst (GRB). At ∼5\sim 5 s after core bounce, the jet has escaped the host star and the Lorentz factor of the material in the jet at large radii ∼1011\sim 10^{11} cm is similar to that in the magnetar wind near the source. Most of the spindown power of the central magnetar escapes via the relativistic jet. There are fluctuations in the Lorentz factor and energy flux in the jet on ∼0.01−0.1\sim 0.01-0.1 second timescale. These may contribute to variability in GRB emission (e.g., via internal shocks).Comment: 5 pages, 3 figures, accepted in MNRAS letter, presented at the conference "Astrophysics of Compact Objects", 1-7 July, Huangshan, Chin

    The formation of high-field magnetic white dwarfs from common envelopes

    Full text link
    The origin of highly-magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star is engulfed by a post-main-sequence giant, the hydrodynamic drag in the envelope of the giant leads to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.Comment: Accepted to Proceedings of the National Academy of Sciences. Under PNAS embargo until time of publicatio
    • …
    corecore