585 research outputs found
The Adaptive Priority Queue with Elimination and Combining
Priority queues are fundamental abstract data structures, often used to
manage limited resources in parallel programming. Several proposed parallel
priority queue implementations are based on skiplists, harnessing the potential
for parallelism of the add() operations. In addition, methods such as Flat
Combining have been proposed to reduce contention by batching together multiple
operations to be executed by a single thread. While this technique can decrease
lock-switching overhead and the number of pointer changes required by the
removeMin() operations in the priority queue, it can also create a sequential
bottleneck and limit parallelism, especially for non-conflicting add()
operations.
In this paper, we describe a novel priority queue design, harnessing the
scalability of parallel insertions in conjunction with the efficiency of
batched removals. Moreover, we present a new elimination algorithm suitable for
a priority queue, which further increases concurrency on balanced workloads
with similar numbers of add() and removeMin() operations. We implement and
evaluate our design using a variety of techniques including locking, atomic
operations, hardware transactional memory, as well as employing adaptive
heuristics given the workload.Comment: Accepted at DISC'14 - this is the full version with appendices,
including more algorithm
Phase Difference Between the Electromagnetic and Strong Amplitudes for psi(2S) and J/psi Decays into Pairs of Pseudoscalar Mesons
Using the data for 24.5x10^6 psi(2S) produced in e^+e^- annihilations at
sqrt{s}=3686 MeV at the CESR-c e^+e^- collider and 8.6x10^6 J/psi produced in
the decay psi(2S)->pi^+pi^-J/psi, the branching fractions for psi(2S) and J/psi
decays to pairs of pseudoscalar mesons, pi^+pi^-, K^+K^-, and K_S K_L, have
been measured using the CLEO-c detector. We obtain branching fractions
Br(psi(2S)->pi^+pi^-)=(7.6+-2.5+-0.6)x10^-6,
Br(psi(2S)->K^+K^-)=(74.8+-2.3+-3.9)x10^-6, Br(psi(2S)->K_S
K_L)=(52.8+-2.5+-3.4)x10^-6, and Br(J/psi->pi^+pi^-)=(1.47+-0.13+-0.13)x10^-4,
Br(J/psi->K^+K^-)=(2.86+-0.09+-0.19)x10^-4, Br(J/psi+-K_S
K_L)=(2.62+-0.15+-0.14)x10^-4, where the first errors are statistical and the
second errors are systematic. The phase differences between the amplitudes for
electromagnetic and strong decays of psi(2S) and J/psi to 0^{-+} pseudoscalar
pairs are determined by a Monte Carlo method to be
\delta(psi(2S)_{PP}=(110.5^{+16.0}_{-9.5})^o and
\delta(J/psi)_{PP}=(73.5^{+5.0}_{-4.5})^o. The difference between the two is
\Delta\delta = \delta(psi(2S))_{PP}-\delta(J/psi)_{PP}
=(37.0^{+16.5}_{-10.5})^o.Comment: 16 pages, 5 figures, submitted to PR
An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-Through-UV Curve Morphology
We study the IR-through-UV interstellar extinction curves towards 328
Galactic B and late-O stars. We use a new technique which employs stellar
atmosphere models in lieu of unreddened "standard" stars. This technique is
capable of virtually eliminating spectral mismatch errors in the curves. It
also allows a quantitative assessment of the errors and enables a rigorous
testing of the significance of relationships between various curve parameters,
regardless of whether their uncertainties are correlated. Analysis of the
curves gives the following results: (1) In accord with our previous findings,
the central position of the 2175 A extinction bump is mildly variable, its
width is highly variable, and the two variations are unrelated. (2) Strong
correlations are found among some extinction properties within the UV region,
and within the IR region. (3) With the exception of a few curves with extreme
(i.e., large) values of R(V), the UV and IR portions of Galactic extinction
curves are not correlated with each other. (4) The large sightline-to-sightline
variation seen in our sample implies that any average Galactic extinction curve
will always reflect the biases of its parent sample. (5) The use of an average
curve to deredden a spectral energy distribution (SED) will result in
significant errors, and a realistic error budget for the dereddened SED must
include the observed variance of Galactic curves. While the observed large
sightline-to-sightline variations, and the lack of correlation among the
various features of the curves, make it difficult to meaningfully characterize
average extinction properties, they demonstrate that extinction curves respond
sensitively to local conditions. Thus, each curve contains potentially unique
information about the grains along its sightline.Comment: To appear in the Astrophysical Journal, Part 1, July 1, 2007. Figures
and Tables which will appear only in the electronic version of the Journal
can be obtained via anonymous ftp from ftp://ftp.astronomy.villanova.edu .
After logging in, change directories to "fitz/FMV_EXTINCTION". A README file
describes the various files present in the director
Observational Constraints on Interstellar Grain Alignment
We present new multicolor photo-polarimetry of stars behind the Southern
Coalsack. Analyzed together with multiband polarization data from the
literature, probing the Chamaeleon I, Musca, rho Opiuchus, R CrA and Taurus
clouds, we show that the wavelength of maximum polarization (lambda_max) is
linearly correlated with the radiation environment of the grains. Using
Far-Infrared emission data, we show that the large scatter seen in previous
studies of lambda_max as a function of A_V is primarily due to line of sight
effects causing some A_V measurements to not be a good tracer of the extinction
(radiation field strength) seen by the grains being probed. The derived slopes
in lambda_max vs. A_V, for the individual clouds, are consistent with a common
value, while the zero intercepts scale with the average values of the ratios of
total-to-selective extinction (R_V) for the individual clouds. Within each
cloud we do not find direct correlations between lambda_max and R_V. The
positive slope in consistent with recent developments in theory and indicating
alignment driven by the radiation field. The present data cannot conclusively
differentiate between direct radiative torques and alignment driven by H_2
formation. However, the small values of lambda_max(A_V=0), seen in several
clouds, suggest a role for the latter, at least at the cloud surfaces. The
scatter in the lambda_max vs. A_V relation is found to be associated with the
characteristics of the embedded Young Stellar Objects (YSO) in the clouds. We
propose that this is partially due to locally increased plasma damping of the
grain rotation caused by X-rays from the YSOs.Comment: Accepted for publication in the Astrophysical Journa
E835 at FNAL: Charmonium Spectroscopy in Annihilations
I present preliminary results on the search for in its
and decay modes. We observe an excess of \eta_c\gamma{\cal P} \sim 0.001M=3525.8 \pm 0.2 \pm 0.2
\Gamma\leq10.6\pm 3.7\pm3.4(br) <
\Gamma_{\bar{p}p}B_{\eta_c\gamma} < 12.8\pm 4.8\pm4.5(br) J/\psi\pi^0$ mode.Comment: Presented at the 6th International Conference on Hyperons, Charm and
Beauty Hadrons (BEACH 2004), Chicago(Il), June 27-July 3,200
Interference Study of the chi_c0 (1^3P_0) in the Reaction Proton-Antiproton -> pi^0 pi^0
Fermilab experiment E835 has observed proton-antiproton annihilation
production of the charmonium state chi_c0 and its subsequent decay into pi^0
pi^0. Although the resonant amplitude is an order of magnitude smaller than
that of the non-resonant continuum production of pi^0 pi^0, an enhanced
interference signal is evident. A partial wave expansion is used to extract
physics parameters. The amplitudes J=0 and 2, of comparable strength, dominate
the expansion. Both are accessed by L=1 in the entrance proton-antiproton
channel. The product of the input and output branching fractions is determined
to be B(pbar p -> chi_c0) x B(chi_c0 -> pi^0 pi^0)= (5.09 +- 0.81 +- 0.25) x
10^-7.Comment: 4 pages, 4 figures, Accepted by PRL (July 2003
Precision measurements of the total and partial widths of the psi(2S) charmonium meson with a new complementary-scan technique in antiproton-proton annihilations
We present new precision measurements of the psi(2S) total and partial widths
from excitation curves obtained in antiproton-proton annihilations by Fermilab
experiment E835 at the Antiproton Accumulator in the year 2000. A new technique
of complementary scans was developed to study narrow resonances with
stochastically cooled antiproton beams. The technique relies on precise
revolution-frequency and orbit-length measurements, while making the analysis
of the excitation curve almost independent of machine lattice parameters. We
study the psi(2S) meson through the processes pbar p -> e+ e- and pbar p ->
J/psi + X -> e+ e- + X. We measure the width to be Gamma = 290 +- 25(sta) +-
4(sys) keV and the combination of partial widths Gamma_e+e- * Gamma_pbarp /
Gamma = 579 +- 38(sta) +- 36(sys) meV, which represent the most precise
measurements to date.Comment: 17 pages, 3 figures, 3 tables. Final manuscript accepted for
publication in Phys. Lett. B. Parts of the text slightly expanded or
rearranged; results are unchange
Studies of the decays D^0 \rightarrow K_S^0K^-\pi^+ and D^0 \rightarrow K_S^0K^+\pi^-
The first measurements of the coherence factor R_{K_S^0K\pi} and the average
strong--phase difference \delta^{K_S^0K\pi} in D^0 \to K_S^0 K^\mp\pi^\pm
decays are reported. These parameters can be used to improve the determination
of the unitary triangle angle \gamma\ in B^- \rightarrow
decays, where is either a D^0 or a D^0-bar meson decaying to
the same final state, and also in studies of charm mixing. The measurements of
the coherence factor and strong-phase difference are made using
quantum-correlated, fully-reconstructed D^0D^0-bar pairs produced in e^+e^-
collisions at the \psi(3770) resonance. The measured values are R_{K_S^0K\pi} =
0.70 \pm 0.08 and \delta^{K_S^0K\pi} = (0.1 \pm 15.7) for an
unrestricted kinematic region and R_{K*K} = 0.94 \pm 0.12 and \delta^{K*K} =
(-16.6 \pm 18.4) for a region where the combined K_S^0 \pi^\pm
invariant mass is within 100 MeV/c^2 of the K^{*}(892)^\pm mass. These results
indicate a significant level of coherence in the decay. In addition, isobar
models are presented for the two decays, which show the dominance of the
K^*(892)^\pm resonance. The branching ratio {B}(D^0 \rightarrow
K_S^0K^+\pi^-)/{B}(D^0 \rightarrow K_S^0K^-\pi^+) is determined to be 0.592 \pm
0.044 (stat.) \pm 0.018 (syst.), which is more precise than previous
measurements.Comment: 38 pages. Version 3 updated to include the erratum information.
Errors corrected in Eqs (25), (26), 28). Fit results updated accordingly, and
external inputs updated to latest best known values. Typo corrected in Eq(3)-
no other consequence
Observation of the Dalitz Decay
Using 586 of collision data acquired at
GeV with the CLEO-c detector at the Cornell Electron Storage
Ring, we report the first observation of
with a significance of . The ratio of branching fractions
\calB(D_{s}^{*+} \to D_{s}^{+} e^{+} e^{-}) / \calB(D_{s}^{*+} \to D_{s}^{+}
\gamma) is measured to be , which is consistent with theoretical expectations
- âŠ