426 research outputs found

    Simulatings POVMs on EPR pairs with six bits of expected communication

    Full text link
    We present a classical protocol for simulating correlations obtained by bipartite POVMs on an EPR pair. The protocol uses shared random variables (also known as local hidden variables) augmented by six bits of expected communication.Comment: 3 pages, short not

    Entanglement swapping, light cones and elements of reality

    Full text link
    Recently, a number of two-participant all-versus-nothing Bell experiments have been proposed. Here, we give local realistic explanations for these experiments. More precisely, we examine the scenario where a participant swaps his entanglement with two other participants and then is removed from the experiment; we also examine the scenario where two particles are in the same light cone, i.e. belong to a single participant. Our conclusion is that, in both cases, the proposed experiments are not convincing proofs against local realism.Comment: 10 pages, no figure, LHV models given explicitely, more explanation

    Signatures of non-classicality in mixed-state quantum computation

    Full text link
    We investigate signatures of non-classicality in quantum states, in particular, those involved in the DQC1 model of mixed-state quantum computation [Phys. Rev. Lett. 81, 5672 (1998)]. To do so, we consider two known non-classicality criteria. The first quantifies disturbance of a quantum state under locally noneffective unitary operations (LNU), which are local unitaries acting invariantly on a subsystem. The second quantifies measurement induced disturbance (MID) in the eigenbasis of the reduced density matrices. We study the role of both figures of non-classicality in the exponential speedup of the DQC1 model and compare them vis-a-vis the interpretation provided in terms of quantum discord. In particular, we prove that a non-zero quantum discord implies a non-zero shift under LNUs. We also use the MID measure to study the locking of classical correlations [Phys. Rev. Lett. 92, 067902 (2004)] using two mutually unbiased bases (MUB). We find the MID measure to exactly correspond to the number of locked bits of correlation. For three or more MUBs, it predicts the possibility of superior locking effects.Comment: Published version, containing additional discussion on the role of non-classicality in the locking of classical correlation

    Small violations of full correlation Bell inequalities for multipartite pure random states

    Full text link
    We estimate the probability of random NN-qudit pure states violating full-correlation Bell inequalities with two dichotomic observables per site. These inequalities can show violations that grow exponentially with NN, but we prove this is not the typical case. For many-qubit states the probability to violate any of these inequalities by an amount that grows linearly with NN is vanishingly small. If each system's Hilbert space dimension is larger than two, on the other hand, the probability of seeing \emph{any} violation is already small. For the qubits case we discuss furthermore the consequences of this result for the probability of seeing arbitrary violations (\emph i.e., of any order of magnitude) when experimental imperfections are considered.Comment: 16 pages, one colum

    Semi-device-independent bounds on entanglement

    Full text link
    Detection and quantification of entanglement in quantum resources are two key steps in the implementation of various quantum-information processing tasks. Here, we show that Bell-type inequalities are not only useful in verifying the presence of entanglement but can also be used to bound the entanglement of the underlying physical system. Our main tool consists of a family of Clauser-Horne-like Bell inequalities that cannot be violated maximally by any finite-dimensional maximally entangled state. Using these inequalities, we demonstrate the explicit construction of both lower and upper bounds on the concurrence for two-qubit states. The fact that these bounds arise from Bell-type inequalities also allows them to be obtained in a semi-device-independent manner, that is, with assumption of the dimension of the Hilbert space but without resorting to any knowledge of the actual measurements being performed on the individual subsystems.Comment: 8 pages, 2 figures (published version). Note 1: Title changed to distinguish our approach from the standard device-independent scenario where no assumption on the Hilbert space dimension is made. Note 2: This paper contains explicit examples of more nonlocality with less entanglement in the simplest CH-like scenario (see also arXiv:1011.5206 by Vidick and Wehner for related results

    Nonlocality and entanglement in a strange system

    Get PDF
    We show that the relation between nonlocality and entanglement is subtler than one naively expects. In order to do this we consider the neutral kaon system--which is oscillating in time (particle--antiparticle mixing) and decaying--and describe it as an open quantum system. We consider a Bell--CHSH inequality and show a novel violation for non--maximally entangled states. Considering the change of purity and entanglement in time we find that, despite the fact that only two degrees of freedom at a certain time can be measured, the neutral kaon system does not behave like a bipartite qubit system.Comment: 7 pages, 2 figures, extended versio
    corecore