118 research outputs found
Surface Energy-Modulated Inkjet Printing of Semiconductors
Small-molecule organic semiconductors and quantum dots stabilized with organic surface ligand are drawing attention in future generation solution-processed devices because of their solubility in miscellaneous solvents. Solvent processing and device performance can be effectively modulated with a surface modification layer on the substrate or via ink formulation. Characterization of surface property, specifically the surface energy of the substrate and the liquid, is essentially informative. Investigation on film growth and assembling behavior as well as process optimization via surface energy modulation is successfully achieved
Research progress in physiological effects of resistant substances of Urtica dioica L. on animal performance and feed conversion
Several members of family Urticaceae are mainly found in the temperate and subtropical zones of the Northern Hemisphere and are important medicinal plants. Among them, Urtica dioica L. (Urticaceae) is an annual or perennial herb that has been used for feeding and medicinal purposes since long time and is the most exploited species of Urticaceae. Recently, it has received attention to be used as animal feed, as its fresh leaves fed to animals in moderate, dried, and other forms. This review details the advantages of U. dioica as an alternative feed in terms of germplasm specificity, nutritional composition, and feed application status. Its roots, stems, leaves, and seeds are rich in active ingredients. It has also been found to have anticancer effects through antioxidant action and promotion of apoptosis of cancer cells. In shady conditions, U. dioica is highly adaptable while under stressful conditions of drought; it also reduces light absorption and ensures carbon assimilation through light energy conversion efficiency. Therefore, it can be added to animal diets as a suitable feed to reduce costs and improve economic efficiency. This paper investigates the feasibility of using U. dioica as a feed and systematically presents the progress of research and exploitation of U. dioica
Megasphaera elsdenii Lactate Degradation Pattern Shifts in Rumen Acidosis Models
Background: Megasphaera elsdenii is an ecologically important rumen bacterium that metabolizes lactate and relieves rumen acidosis (RA) induced by a high-grain-diet. Understanding the regulatory mechanisms of the lactate metabolism of this species in RA conditions might contribute to developing dietary strategies to alleviate RA. Methods: Megasphaera elsdenii was co-cultured with four lactate producers (Streptococcus bovis, Lactobacilli fermentum, Butyrivibrio fibrisolvens, and Selenomonas ruminantium) and a series of substrate starch doses (1, 3, and 9 g/L) were used to induce one normal and two RA models (subacute rumen acidosis, SARA and acute rumen acidosis, ARA) under batch conditions. The associations between bacterial competition and the shift of organic acids' (OA) accumulation patterns in both statics and dynamics manners were investigated in RA models. Furthermore, we examined the effects of substrate lactate concentration and pH on Megasphaera elsdenii's lactate degradation pattern and genes related to the lactate utilizing pathways in the continuous culture. Results and Conclusion: The positive growth of M. elsdenii and B. fibrisolvens caused OA accumulation in the SARA model to shift from lactate to butyrate and resulted in pH recovery. Furthermore, both the quantities of substrate lactate and pH had remarkable effects on M. elsdenii lactate utilization due to the transcriptional regulation of metabolic genes, and the lactate utilization in M. elsdenii was more sensitive to pH changes than to the substrate lactate level. In addition, compared with associations based on statics data, associations discovered from dynamics data showed greater significance and gave additional explanations regarding the relationships between bacterial competition and OA accumulation
Association between temperament related traits and SNPs in the serotonin and oxytocin systems in Merino sheep
ABSTRACT Animal temperament is defined as the consistent behavioral and physiological differences that are seen between individuals in response to the same stressor. Neurotransmitter systems, like serotonin and oxytocin in the central nervous system, underlie variation in behavioral traits in humans and other animals. Variations like single nucleotide polymorphisms (SNPs) in the genes for tryptophan 5-hydroxylase (TPH2), the serotonin transporter (SLC6A4), the serotonin receptor (HTR2A), and the oxytocin receptor (OXTR) are associated with behavioral phenotype in humans. Thus, the objective of this study was to identify SNPs in those genes and to test if those variations are associated with the temperament in Merino sheep. Using ewes from the University of Western Australia temperament flock, that has been selected on emotional reactivity for more than 20 generations, eight SNPs (rs107856757, rs107856818, rs107856856 and rs107857156 in TPH2, rs20917091 in SLC6A4, rs17196799 and rs17193181 in HTR2A, and rs17664565 in OXTR) were found to be distributed differently between calm and nervous sheep. These eight SNPs were then genotyped in 260 sheep from a flock that has never been selected on emotional reactivity, followed by the estimation of the behavioral traits of those 260 sheep using an arena test and an isolation box test. We found that several SNPs in TPH2 (rs107856757, rs107856818, rs107856856 and rs107857156) were in strong linkage disequilibrium, and all were associated with behavioral phenotype in the non-selected sheep. Similarly, rs17196799 in HTR2A was also associated with the behavioral phenotype
Dietary rumen-protected L-arginine or N-carbamylglutamate attenuated fetal hepatic inflammation in undernourished ewes suffering from intrauterine growth restriction
This study aimed to explore whether dietary rumen-protected L-arginine (RP-Arg) or N-carbamylglutamate (NCG) supplementation to feed-restricted pregnant ewes counteracts fetal hepatic inflammation and innate immune dysfunction associated with intrauterine growth retardation (IUGR) in ovine fetuses. On d 35 of pregnancy, twin-bearing Hu ewes (n = 32) were randomly assigned to 4 treatment groups (8 ewes and 16 fetuses per group) and fed diets containing 100% of the NRC requirements (CON), 50% of the NRC requirements (RES), RES + RP-Arg (20 g/d) (RESA), or RES + NCG (5 g/d) (RESN). At 08:00 on d 110 of gestation, fetal blood and liver tissue samples were collected. The levels of triglyceride, free fatty acid, cholesterol and beta-hydroxybutyrate in the fetal blood of RESA and RESN groups were lower (P < 0.05) than those of the RES group, but were higher (P < 0.05) than those of the CON group. The interleukin (IL)6 and IL-1 levels in fetal blood and liver tissue as well as the myeloid differentiation primary response 88 (MyD88), transforming growth factor beta (TGF beta), and nuclear factor kappa B (NF-kB) mRNA levels in the fetal liver were decreased (P < 0.05) by the NCG or RP-Arg supplementation compared to the RES treatment. Similarly, the toll-like receptor (TLR)-4, MyD88, TGFb, and p-c-Jun N-terminal kinase (JNK) protein levels in the fetal liver were reduced (P < 0.05) in the NCG and RP-Arg-supplemented groups compared to the RES group. These results showed that dietary supplementation of RP-Arg or NCG to underfed pregnant ewes could protect against IUGR fetal hepatic inflammation via improving lipid metabolism, down-regulating the TLR-4 and the inflammatory JNK and NF-kB signaling pathways, and decreasing cytokine production in ovine fetal blood and liver tissue. (C) 2021 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.National Natural Science Foundation of China [31902180]; Top Talents Award Plan of Yangzhou University; Cyanine Project of Yangzhou University; State Key Laboratory of Sheep Genetic Improvement and Healthy Production [2021ZD07]; Yangzhou University Science and Technology Innovation Foundation [2019CXJ152]The research was supported by the fund for the National Natural Science Foundation of China (31902180), the Top Talents Award Plan of Yangzhou University (2019), the Cyanine Project of Yangzhou University (2020), the funds from State Key Laboratory of Sheep Genetic Improvement and Healthy Production (2021ZD07), and Yangzhou University Science and Technology Innovation Foundation (2019CXJ152). The authors thank all the members of Hong Rong Wang's laboratory who contributed to sample determination
Arginine Relieves the Inflammatory Response and Enhances the Casein Expression in Bovine Mammary Epithelial Cells Induced by Lipopolysaccharide
As one of functional active amino acids, L-arginine holds a key position in immunity. However, the mechanism that arginine modulates cow mammary inflammatory response in ruminant is unclear. Therefore, this study was conducted to investigate the effects of L-arginine on inflammatory response and casein expression after challenging the bovine mammary epithelial cells (BMECs) with lipopolysaccharide (LPS). The cells were divided into four groups, stimulated with or without LPS (10 g/mL) and treated with or without arginine (100 g/mL) for 12 h. The concentration of proinflammatory cytokines, inducible nitric oxide synthase (iNOS), mammalian target of rapamycin (mTOR), and Toll-like receptor 4 (TLR4) signaling pathways as well as the casein was determined. The results showed that arginine reduced the LPS-induced production like IL-1 , IL-6, TNF-, and iNOS. Though the expression of NF-B was attenuated and the mTOR signaling pathway was upregulated, arginine had no effect on TLR4 expression. In addition, our results show that the content of -casein and the total casein were enhanced after arginine was supplemented in LPS-induced BMECs. In conclusion, arginine could relieve the inflammatory reaction induced by LPS and enhance the concentration of -casein and the total casein in bovine mammary epithelial cells
Nanomaterials-Based Biosensors against <em>Aspergillus</em> and Aspergillosis: Control and Diagnostic Perspectives
Aspergillosis is the name given to the spectrum of diseases caused by the genus Aspergillus. Research on aspergillosis has shown a progressive expansion over the past decades, largely due to the rise in the number of immunocompromised individuals who are at risk for the infection. Nanotechnology provides innovative tools in the medicine, diagnosis, and treatment. The unique properties of nanomaterials like small size in the nanoscale have attracted researchers to explore their potential, especially in medical diagnostics. Aptamers, considered as chemical antibody, are short, single-stranded oligonucleotide molecules with high affinity and specificity to interact with target molecules even superior to antibody. Accordingly, development of nanomaterials-based biosensors technology such as immunosensors and aptasensors against Aspergillus and Aspergillosis is of great significance and urgency. In this book chapter, we comprehensively introduce and analyze the recent progress of nanomaterials-based biosensors against Aspergillus and Aspergillosis. In addition, we reveal the challenges and provide our opinion in future opportunities for such sensing platform development. Ultimately, conclusion and future prospects are highlighted and summarized
Arginine Alters miRNA Expression Involved in Development and Proliferation of Rat Mammary Tissue
This study was designed to determine the effects of dietary arginine on development and proliferation in rat mammary tissue through changes in miRNA profiles. Twelve pregnant Wistar rats were allocated randomly to two groups. A basal diet containing arginine or the control diet containing glutamate on an equal nitrogen basis as the arginine supplemented diet were used. The experiment included a pre-experimental period of four days before parturition and an experimental period of 17 days after parturition. Mammary tissue was collected for histology, RNA extraction and high-throughput sequencing analysis. The greater mammary acinar area indicated that arginine supplementation enhanced mammary tissue development (p < 0.01). MicroRNA profiling indicated that seven miRNA (miR-206-3p, miR-133a-5p, miR-133b-3p, miR-1-3p, miR-133a-3p, miR-1b and miR-486) were differentially expressed in response to Arginine when compared with the glutamate-based control group. In silico gene ontology enrichment and KEGG pathway analysis revealed between 240 and 535 putative target genes among the miRNA. Further verification by qPCR revealed concordance with the differential expression from the sequencing results: 17 of 28 target genes were differentially expressed (15 were highly expressed in arginine and 2 in control) and 11 target genes did not have significant difference in expression. In conclusion, our study suggests that arginine may potentially regulate the development of rat mammary glands through regulating miRNAs
Dietary N-carbamylglutamate or L-arginine supplementation improves hepatic energy status and mitochondrial function and inhibits the AMP-activated protein kinase- peroxisome proliferator-activated receptor ? coactivator-1?-transcription factor A pathway in intrauterine-growth-retarded suckling lambs
The objective of this study was to investigate the effects of dietary administration of L-arginine (Arg) or N-carbamylglutamate (NCG) on hepatic energy status and mitochondrial functions in suckling Hu lambs with intrauterine growth retardation (IUGR). Forty-eight newborn Hu lambs of 7 d old were allocated into 4 treatment groups of 12 lambs each, in triplicate with 4 lambs per replicate (2 males and 2 females) as follows: CON (lambs of normal birth weight, 4.25 +/- 0.14 kg), IUGR (3.01 +/- 0.12 kg), IUGR thorn 1% Arg (2.99 +/- 0.13 kg), or IUGR thorn 0.1% NCG (3.03 +/- 0.11 kg). The experiment lasted for 21 d, until d 28 after birth, and all lambs were fed milk replacer as a basal diet. Compared with IUGR lambs, NCG or Arg administration increased (P < 0.05) the adenosine triphosphate (ATP) level and the activities of complexes I/III/IV, isocitrate dehydrogenase and citrate synthase in the liver. Compared with CON lambs, the relative mRNA levels of adenosine monophosphate-activated protein kinase alpha 1 (AMPK alpha 1), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1 alpha) and transcription factor A (TFAM) were increased (P < 0.05) in the liver of IUGR lambs, but were decreased (P < 0.05) in the liver of NCG- or Arg-treated lambs compared with those in the IUGR lambs. Compared with IUGR lambs, NCG or Arg administration decreased (P < 0.05) the total AMPK alpha (tAMPK alpha)-to-phosphorylated AMPK alpha (pAMPK alpha) ratio and the protein expression of PGC1a alpha and TFAM. The results suggested that dietary Arg or NCG supplements improved hepatic energy status and mitochondrial function and inhibited the AMPK-PGC1 alpha-TFAM pathway in IUGR suckling lambs. (C) 2021 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.fund for the National Natural Science Foundation of China [31902180]; Research Project of Natural Science Foundation of Jiangsu Province [BK20170488]; China Postdoctoral Science Foundation [2017M610358]; Science and Technology Innovation Project of Yangzhou University [2019CXJ152]; Top Talents Award Plan of Yangzhou University (2020); Cyanine Project of Yangzhou University (2020)The research was supported by the fund for the National Natural Science Foundation of China (31902180), the Research Project of Natural Science Foundation of Jiangsu Province (BK20170488), the China Postdoctoral Science Foundation (2017M610358), the Science and Technology Innovation Project of Yangzhou University (2019CXJ152), the Top Talents Award Plan of Yangzhou University (2020), and the Cyanine Project of Yangzhou University (2020)
Dietary supplementation of l-arginine and N-carbamylglutamate enhances duodenal barrier and mitochondrial functions and suppresses duodenal inflammation and mitophagy in suckling lambs suffering from intrauterine-growth-restriction
The current work aimed at investigating the effects of the dietary supplementation of N-carbamylglutamate (NCG) or l-arginine (Arg) on the duodenal mitophagy, mitochondrial function, inflammation, and barrier function in suckling lambs suffering from intrauterine-growth-retardation (IUGR). Forty-eight neonate Hu lambs were used in this study: 12 lambs with normal birth weight (NBW: 4.25 +/- 0.14 kg) and 36 lambs with IUGR (3.01 +/- 0.13 kg). Seven day old lambs were assigned to 4 treatment groups (12 lambs in each group) as follows: control group (CON), IUGR group, IUGR + Arg, and IUGR + NCG. Lambs were fed the experimental diets for 21 days from 7 days to 28 days of age. Compared with IUGR lambs, the Arg or NCG-treated IUGR lambs had a markedly higher duodenal transepithelial electrical resistance (TER) and lower fluorescein isothiocyanate dextran (FD4) (P < 0.05), respectively. The duodenal mitochondrial membrane potential change (Delta psi(m)), relative mitochondrial DNA (mtDNA) content, adenosine triphosphate (ATP) level, together with the activities of the respiratory complexes I, III, and IV were markedly higher in Arg or NCG-treated IUGR lambs than those in non-supplemented IUGR lambs (P < 0.05). The expressions of the integrity-related proteins (occludin and zonula occludens-1 (ZO-1)), antioxidant- and apoptosis-related proteins (B-cell lymphoma/leukaemia 2 (Bcl2), superoxide dismutase 2 (SOD2), catalase (CAT), and glutathione peroxidase 1 (GPx1)), and the nitric oxide-dependent pathway-related proteins (epithelial NO synthase (eNOS) and inducible NO synthase (iNOS)) were higher in NCG or Arg-supplemented IUGR lambs than those in nontreated IUGR lambs (P < 0.05). The duodenal expressions of the mitophagy-related proteins (microtubule-associated protein light chain 3 (LC3) I, LC3 II, Belin1, PTEN induced putative kinase 1 (PINK1), and Parkin) and the immune function-related proteins (myeloid differentiation factor 88 (MyD88), IL-6, nuclear factor kappa B (p65), toll-like receptor (TLR4) and TNF-alpha) were reduced (P < 0.05) in NCG or Arg-supplemented IUGR lambs compared with non-supplemented IUGR lambs. These results demonstrated that the dietary supplementation of Arg or NCG enhanced the duodenal barrier function and mitochondrial function, mitigated duodenal inflammation, and suppressed mitophagy in suckling lambs suffering from IUGR.fund for the National Natural Science Foundation of China [31902180]; Research Project of the Natural Science Foundation of Jiangsu Province [BK20170488]; China Postdoctoral Science Foundation [2017M610358]The research was supported by the fund for the National Natural Science Foundation of China (grant number 31902180), the Research Project of the Natural Science Foundation of Jiangsu Province (BK20170488), and the China Postdoctoral Science Foundation (2017M610358). The authors thank all the members of the Hong Rong Wang's laboratory for their contribution to sample determination
- …