1,513 research outputs found
Concept level evaluation of the optical voltage and current sensors and an arrayed waveguide grating for aero-electrical system applications
In this paper we present, for the first time, the hybrid fiber-optic voltage and current sensors interrogated using an arrayed waveguide grating (AWG) device. Due to the excellent dynamic capabilities of an AWG-based interrogator and its improved robustness, the proposed system would be suitable for voltage and current monitoring within an aircraft electrical system. The voltage sensor comprises a multilayer piezoelectric stack, acting as a voltage-to-strain transducer, and a fiber Bragg grating (FBG) used to convert voltage induced strain changes within the stack into wavelength shifts. These wavelength shifts are then analysed by an AWG. To measure current, the same sensor type is used to monitor a specially designed ferrite-core current transformer. It is shown that the system is capable of measuring variable frequency of voltage and current waveforms, typical of those anticipated in the next generation aero-electric power systems. It is also demonstrated that the system can be used for voltage and current harmonic analysis and power quality measurement in such networks
Frequency and fundamental signal measurement algorithms for distributed control and protection applications
Increasing penetration of distributed generation within electricity networks leads to the requirement for cheap, integrated, protection and control systems. To minimise cost, algorithms for the measurement of AC voltage and current waveforms can be implemented on a single microcontroller, which also carries out other protection and control tasks, including communication and data logging. This limits the frame rate of the major algorithms, although analogue to digital converters (ADCs) can be oversampled using peripheral control processors on suitable microcontrollers. Measurement algorithms also have to be tolerant of poor power quality, which may arise within grid-connected or islanded (e.g. emergency, battlefield or marine) power system scenarios. This study presents a 'Clarke-FLL hybrid' architecture, which combines a three-phase Clarke transformation measurement with a frequency-locked loop (FLL). This hybrid contains suitable algorithms for the measurement of frequency, amplitude and phase within dynamic three-phase AC power systems. The Clarke-FLL hybrid is shown to be robust and accurate, with harmonic content up to and above 28% total harmonic distortion (THD), and with the major algorithms executing at only 500 samples per second. This is achieved by careful optimisation and cascaded use of exact-time averaging techniques, which prove to be useful at all stages of the measurements: from DC bias removal through low-sample-rate Fourier analysis to sub-harmonic ripple removal. Platform-independent algorithms for three-phase nodal power flow analysis are benchmarked on three processors, including the Infineon TC1796 microcontroller, on which only 10% of the 2000 mus frame time is required, leaving the remainder free for other algorithms
Impact of marine power system architectures on IFEP vessel availability and survivability
In recent years integrated full electric propulsion (IFEP) has become a popular power system concept within the marine community, both for the naval and the commercial community. In this paper the authors discuss the need for a detailed investigation into the impact of different IFEP power system architectures on the availability of power and hence on the survivability of the vessel. The power system architectures considered here could relate to either a commercial or a naval vessel and include radial, ring and hybrid AC/DC arrangements. Comparative fault studies of the architectures were carried out in an attempt to make valuable observations on the survivability of a vessel. Simulation results demonstrate that the ring and hybrid AC/DC architectural contribute to a higher survivability than the radial architecture. However, there are still challenges that need to be addressed and therefore potential solutions such as fault current limiters will be considered
Recommended from our members
A GA-based technique for the scheduling of storage tanks
YesThis paper proposes the application of a
genetic algorithm based methodology for the scheduling
of storage tanks. The proposed approach is an
integration of GA and heuristic rule-based techniques,
which decomposes the complex mixed integer
optimisation problem into integer and real number subproblems.
The GA string considers the integer problem,
and the heuristic approach solves the real number
problems within the GA framework. The algorithm is
demonstrated for a test problem related to a water
treatment facility at a port, and has been found to give a
significantly better schedule than those generated using a
heuristic-based approach
Recommended from our members
GA/SA-based hybrid techniques for the scheduling of generator maintenance in power systems
YesProposes the application of a genetic algorithm (GA) and simulated annealing (SA) based hybrid approach for the scheduling of generator maintenance in power systems using an integer representation. The adapted approach uses the probabilistic acceptance criterion of simulated annealing within the genetic algorithm framework. A case study is formulated in this paper as an integer programming problem using a reliability-based objective function and typical problem constraints. The implementation and performance of the solution technique are discussed. The results in this paper demonstrate that the technique is more effective than approaches based solely on genetic algorithms or solely on simulated annealing. It therefore proves to be a valid approach for the solution of generator maintenance scheduling problem
Architecture of a network-in-the-Loop environment for characterizing AC power system behavior
This paper describes the method by which a large hardware-in-the-loop environment has been realized for three-phase ac power systems. The environment allows an entire laboratory power-network topology (generators, loads, controls, protection devices, and switches) to be placed in the loop of a large power-network simulation. The system is realized by using a realtime power-network simulator, which interacts with the hardware via the indirect control of a large synchronous generator and by measuring currents flowing from its terminals. These measured currents are injected into the simulation via current sources to close the loop. This paper describes the system architecture and, most importantly, the calibration methodologies which have been developed to overcome measurement and loop latencies. In particular, a new "phase advance" calibration removes the requirement to add unwanted components into the simulated network to compensate for loop delay. The results of early commissioning experiments are demonstrated. The present system performance limits under transient conditions (approximately 0.25 Hz/s and 30 V/s to contain peak phase-and voltage-tracking errors within 5. and 1%) are defined mainly by the controllability of the synchronous generator
Data mining reactor fuel grab load trace data to support nuclear core condition monitoring
A critical component of an advanced-gas cooled reactor (AGR) station is the graphite core. As a station ages, the graphite bricks that comprise the core can distort and may eventually crack. As the core cannot be replaced the core integrity ultimately determines the station life. Monitoring these distortions is usually restricted to the routine outages, which occur every few years, as this is the only time that the reactor core can be accessed by external sensing equipment. However, during weekly refueling activities measurements are taken from the core for protection and control purposes. It is shown in this paper that these measurements may be interpreted for condition monitoring purposes, thus potentially providing information relating to core condition on a more frequent basis. This paper describes the data-mining approach adopted to analyze this data and also describes a software system designed and implemented to support this process. The use of this software to develop a model of expected behavior based on historical data, which may highlight events containing unusual features possibly indicative of brick cracking, is also described. Finally, the implementation of this newly acquired understanding in an automated analysis system is described
Providing decision support for the condition-based maintenance of circuit breakers through data mining of trip coil current signatures
The focus of this paper centers on the condition assessment of 11kV-33kV distribution circuit breakers from the analysis of their trip coil current signatures captured using an innovative condition monitoring technology developed by others. Using available expert knowledge in conjunction with a structured process of data mining, thresholds associated with features representing each stage of a circuit breaker's operation may be defined and used to characterize varying states of circuit breaker condition. Knowledge and understanding of satisfactory and unsatisfactory breaker condition can be gained and made explicit from the analysis of captured trip signature data and subsequently used to form the basis of condition assessment and diagnostic rules implemented in a decision support system, used to inform condition-based decisions affecting circuit breaker maintenance. This paper proposes a data mining method for the analysis of condition monitoring data, and demonstrates this method in its discovery of useful knowledge from trip coil data captured from a population of SP Power System's in-service circuit breakers. This knowledge then forms the basis of a decision support system for the condition assessment of these circuit breakers during routine trip testing
A case study of process facility optimization using discrete event simulation and genetic algorithm
Optimization problems such as resource allocation, job-shop scheduling, equipment utilization and process scheduling occur in a broad range of processing industries. This paper presents modeling, simulation and optimization of a port facility such that effective operational management is obtained. A GA base approach has been integrated with the port system model to optimize its operation. A case study of bulk material port handling systems is considered
Applying series braking resistors to improve the stability of low inertia synchronous generators
Widely held concerns over the environmental impact of emissions from large fossil fuelled generating plants are serving to promote the connection of renewable or sustainable generation onto distribution networks. Many such generators are synchronous machines with low values of inertia, and thus possess short critical clearance times to avoid the onset of transient instability. With fault clearance times of up to 1s occurring in distribution networks, there is the potential for a growing problem as distributed generation makes up a larger proportion of installed capacity. This paper proposes the use of series braking resistors that are switched into circuit at the generator terminals as a means of improving transient stability, and thus avoid, or at least defer major upgrades to distribution system protectio
- …