5,438 research outputs found
Wannier interpolation of the electron-phonon matrix elements in polar semiconductors: Polar-optical coupling in GaAs
We generalize the Wannier interpolation of the electron-phonon matrix
elements to the case of polar-optical coupling in polar semiconductors. We
verify our methodological developments against experiments, by calculating the
widths of the electronic bands due to electron-phonon scattering in GaAs, the
prototype polar semiconductor. The calculated widths are then used to estimate
the broadenings of excitons at critical points in GaAs and the electron-phonon
relaxation times of hot electrons. Our findings are in good agreement with
available experimental data. Finally, we demonstrate that while the Fr\"ohlich
interaction is the dominant scattering process for electrons/holes close to the
valley minima, in agreement with low-field transport results, at higher
energies, the intervalley scattering dominates the relaxation dynamics of hot
electrons or holes. The capability of interpolating the polar-optical coupling
opens new perspectives in the calculation of optical absorption and transport
properties in semiconductors and thermoelectrics.Comment: To appear on Phys. Rev.
All-electron magnetic response with pseudopotentials: NMR chemical shifts
A theory for the ab initio calculation of all-electron NMR chemical shifts in
insulators using pseudopotentials is presented. It is formulated for both
finite and infinitely periodic systems and is based on an extension to the
Projector Augmented Wave approach of Bloechl [P. E. Bloechl, Phys. Rev. B 50,
17953 (1994)] and the method of Mauri et al [F. Mauri, B.G. Pfrommer, and S.G.
Louie, Phys. Rev. Lett. 77, 5300 (1996)]. The theory is successfully validated
for molecules by comparison with a selection of quantum chemical results, and
in periodic systems by comparison with plane-wave all-electron results for
diamond.Comment: 25 pages, 4 tables, submitted to Physical Review
Electron Transport and Hot Phonons in Carbon Nanotubes
We demonstrate the key role of phonon occupation in limiting the high-field
ballistic transport in metallic carbon nanotubes. In particular, we provide a
simple analytic formula for the electron transport scattering length, that we
validate by accurate first principles calculations on (6,6) and (11,11)
nanotubes. The comparison of our results with the scattering lengths fitted
from experimental I-V curves indicates the presence of a non-equilibrium
optical phonon heating induced by electron transport. We predict an effective
temperature for optical phonons of thousands Kelvin.Comment: 4 pages, 1 figur
Generalization of the density-matrix method to a non-orthogonal basis
We present a generalization of the Li, Nunes and Vanderbilt density-matrix
method to the case of a non-orthogonal set of basis functions. A representation
of the real-space density matrix is chosen in such a way that only the overlap
matrix, and not its inverse, appears in the energy functional. The generalized
energy functional is shown to be variational with respect to the elements of
the density matrix, which typically remains well localized.Comment: 11 pages + 2 postcript figures at the end (search for -cut here
Hygrothermal damage mechanisms in graphite-epoxy composites
T300/5209 and T300/5208 graphite epoxy laminates were studied experimentally and analytically in order to: (1) determine the coupling between applied stress, internal residual stress, and moisture sorption kinetics; (2) examine the microscopic damage mechanisms due to hygrothermal cycling; (3) evaluate the effect of absorbed moisture and hygrothermal cycling on inplane shear response; (4) determine the permanent loss of interfacial bond strength after moisture absorption and drying; and (5) evaluate the three dimensional stress state in laminates under a combination of hygroscopic, thermal, and mechanical loads. Specimens were conditioned to equilibrium moisture content under steady exposure to 55% or 95% RH at 70 C or 93 C. Some specimens were tested subsequent to moisture conditioning and 100 cycles between -54 C and either 70 C or 93 C
Rates and Equilibria for a Photoisomerizable Antagonist at the Acetylcholine Receptor of Electrophorus Electroplaques
Voltage-jump and light-flash experiments have been performed on isolated Electrophorus electroplaques exposed simultaneously to nicotinic agonists and to the photoisomerizable compound 2,2'-bis-[α-(trimethylammonium)methyl]-azobenzene (2BQ). Dose-response curves are shifted to the right in a nearly parallel fashion by 2BQ, which suggests competitive antagonism; dose-ratio analyses show apparent dissociation constants of 0.3 and 1 µM for the cis and trans isomers, respectively. Flash-induced trans → cis concentration jumps produce the expected decrease in agonist-induced conductance; the time constant is several tens of milliseconds. From the concentration dependence of these rates, we conclude that the association and dissociation rate constants for the cis-2BQ-receptor binding are approximately ~ 10^8 M^(-1) s^(-1) and 60 s^(-1) at 20ºC; the Q_(10) is 3. Flash-induced cis → trans photoisomerizations produce molecular rearrangements of the ligand-receptor complex, but the resulting relaxations probably reflect the kinetics of buffered diffusion rather than of the interaction between trans-2BQ and the receptor. Antagonists seem to bind about an order of magnitude more slowly than agonists at nicotinic receptors
Acceleration Schemes for Ab-Initio Molecular Dynamics and Electronic Structure Calculations
We study the convergence and the stability of fictitious dynamical methods
for electrons. First, we show that a particular damped second-order dynamics
has a much faster rate of convergence to the ground-state than first-order
steepest descent algorithms while retaining their numerical cost per time step.
Our damped dynamics has efficiency comparable to that of conjugate gradient
methods in typical electronic minimization problems. Then, we analyse the
factors that limit the size of the integration time step in approaches based on
plane-wave expansions. The maximum allowed time step is dictated by the highest
frequency components of the fictitious electronic dynamics. These can result
either from the large wavevector components of the kinetic energy or from the
small wavevector components of the Coulomb potential giving rise to the so
called {\it charge sloshing} problem. We show how to eliminate large wavevector
instabilities by adopting a preconditioning scheme that is implemented here for
the first-time in the context of Car-Parrinello ab-initio molecular dynamics
simulations of the ionic motion. We also show how to solve the charge-sloshing
problem when this is present. We substantiate our theoretical analysis with
numerical tests on a number of different silicon and carbon systems having both
insulating and metallic character.Comment: RevTex, 9 figures available upon request, to appear in Phys. Rev.
Effects of magnetism and doping on the electron-phonon coupling in BaFeAs
We calculate the effect of local magnetic moments on the electron-phonon
coupling in BaFeAs using the density functional perturbation
theory. We show that the magnetism enhances the total electron-phonon coupling
by , up to , still not enough to explain the
high critical temperature, but strong enough to have a non-negligible effect on
superconductivity, for instance, by frustrating the coupling with spin
fluctuations and inducing order parameter nodes. The enhancement comes mostly
from a renormalization of the electron-phonon matrix elements. We also
investigate, in the rigid band approximation, the effect of doping, and find
that versus doping does not mirror the behavior of the density of
states; while the latter decreases upon electron doping, the former does not,
and even increases slightly.Comment: 4 pages, 3 figure
Total energy global optimizations using non orthogonal localized orbitals
An energy functional for orbital based calculations is proposed, which
depends on a number of non orthogonal, localized orbitals larger than the
number of occupied states in the system, and on a parameter, the electronic
chemical potential, determining the number of electrons. We show that the
minimization of the functional with respect to overlapping localized orbitals
can be performed so as to attain directly the ground state energy, without
being trapped at local minima. The present approach overcomes the multiple
minima problem present within the original formulation of orbital based
methods; it therefore makes it possible to perform calculations for an
arbitrary system, without including any information about the system bonding
properties in the construction of the input wavefunctions. Furthermore, while
retaining the same computational cost as the original approach, our formulation
allows one to improve the variational estimate of the ground state energy, and
the energy conservation during a molecular dynamics run. Several numerical
examples for surfaces, bulk systems and clusters are presented and discussed.Comment: 24 pages, RevTex file, 5 figures available upon reques
A covalently bound photoisomerizable agonist. Comparison with reversibly bound agonists at electrophorus electroplaques
After disulphide bonds are reduced with dithiothreitol, trans-3-(alpha-bromomethyl)-3’-[alpha-(trimethylammonium)methyl]azobenzene (trans-QBr) alkylates a sulfhydryl group on receptors. The membrane conductance induced by this “tethered agonist” shares many properties with that induced by reversible agonists. Equilibrium conductance increases as the membrane potential is made more negative; the voltage sensitivity resembles that seen with 50 [mu]M carbachol. Voltage- jump relaxations follow an exponential time-course; the rate constants are about twice as large as those seen with 50 mu M carbachol and have the same voltage and temperature sensitivity. With reversible agonists, the rate of channel opening increases with the frequency of agonist-receptor collisions: with tethered trans-Qbr, this rate depends only on intramolecular events. In comparison to the conductance induced by reversible agonists, the QBr-induced conductance is at least 10-fold less sensitive to competitive blockade by tubocurarine and roughly as sensitive to “open-channel blockade” bu QX-222. Light-flash experiments with tethered QBr resemble those with the reversible photoisomerizable agonist, 3,3’,bis-[alpha-(trimethylammonium)methyl]azobenzene (Bis-Q): the conductance is increased by cis {arrow} trans photoisomerizations and decreased by trans {arrow} cis photoisomerizations. As with Bis-Q, ligh-flash relaxations have the same rate constant as voltage-jump relaxations. Receptors with tethered trans isomer. By comparing the agonist-induced conductance with the cis/tans ratio, we conclude that each channel’s activation is determined by the configuration of a single tethered QBr molecule. The QBr-induced conductance shows slow decreases (time constant, several hundred milliseconds), which can be partially reversed by flashes. The similarities suggest that the same rate-limiting step governs the opening and closing of channels for both reversible and tethered agonists. Therefore, this step is probably not the initial encounter between agonist and receptor molecules
- …