5 research outputs found

    The Global Trachoma Mapping Project: Methodology of a 34-Country Population-Based Study.

    Get PDF
    PURPOSE: To complete the baseline trachoma map worldwide by conducting population-based surveys in an estimated 1238 suspected endemic districts of 34 countries. METHODS: A series of national and sub-national projects owned, managed and staffed by ministries of health, conduct house-to-house cluster random sample surveys in evaluation units, which generally correspond to "health district" size: populations of 100,000-250,000 people. In each evaluation unit, we invite all residents aged 1 year and older from h households in each of c clusters to be examined for clinical signs of trachoma, where h is the number of households that can be seen by 1 team in 1 day, and the product h × c is calculated to facilitate recruitment of 1019 children aged 1-9 years. In addition to individual-level demographic and clinical data, household-level water, sanitation and hygiene data are entered into the purpose-built LINKS application on Android smartphones, transmitted to the Cloud, and cleaned, analyzed and ministry-of-health-approved via a secure web-based portal. The main outcome measures are the evaluation unit-level prevalence of follicular trachoma in children aged 1-9 years, prevalence of trachomatous trichiasis in adults aged 15 + years, percentage of households using safe methods for disposal of human feces, and percentage of households with proximate access to water for personal hygiene purposes. RESULTS: In the first year of fieldwork, 347 field teams commenced work in 21 projects in 7 countries. CONCLUSION: With an approach that is innovative in design and scale, we aim to complete baseline mapping of trachoma throughout the world in 2015

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Insights from Microstructure and Mechanical Property Comparisons of Three Pilgered Ferritic ODS Tubes

    Full text link
    International audienceThree oxide dispersion strengthened alloys were fabricated into thin-walled (~500 µm wall thickness) tubes and characterized using x-ray, electron microscopy, and atom probe tomography methods. The three iron-based alloys included the 14%Cr alloy 14WYT, the 12%Cr alloy OFRAC, and a 10%Cr-6%Al alloy CrAZY. Each tube was subjected to a different thermal history during the pilgering process, which allowed for a detailed comparison between varying grain structures and alloy compositions. Atom probe tomography and energy-filtered transmission electron microscopy (TEM) comparisons showed good agreement in precipitate distributions, which matched predicted values using state-of-the-art nanoprecipitate coarsening models. The grain size, precipitate dispersion characteristics, and dislocation densities were then used to estimate yield strengths that were compared against room temperature axial and ring-pull tensile test data. For all three alloys, axial tensile specimens exhibited high tensile strength (>1 GPa) and reasonable plastic strains (10-17%). Ring tensile specimens, conversely, showed limited ductility (~1%) with similar strengths to those measured in the axial orientation. The strengthening models showed mixed agreement with experimentally measured values due to the highly anisotropic microstructures of all three ODS tubes. These results illustrate the need for future model optimization to accommodate non-isotropic microstructures associated with components processed using rolling/pilgering approaches
    corecore