42 research outputs found
Redox-Switching in a Viologen-type Adlayer: An Electrochemical Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy Study on Au(111)-(1×1) Single Crystal Electrodes
We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1×1) electrode and covered by Au(60 nm)@SiO2 core–shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V2+, V+●, and V0 on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of ∼3 × 105, and up to 9 × 107 for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces
Scanning the Potential Energy Surface for Synthesis of Dendrimer-Wrapped Gold Clusters: Design Rules for True Single-Molecule Nanostructures
The formation of true single-molecule complexes between organic ligands and nanoparticles is challenging and requires careful design of molecules with size, shape, and chemical properties tailored for the specific nanoparticle. Here we use computer simulations to describe the atomic-scale structure, dynamics, and energetics of ligand-mediated synthesis and interlinking of 1 nm gold clusters. The models help explain recent experimental results and provide insight into how multidentate thioether dendrimers can be employed for synthesis of true single-ligand–nanoparticle complexes and also nanoparticle–molecule–nanoparticle “dumbbell” nanostructures. Electronic structure calculations reveal the individually weak thioether–gold bonds (325 ± 36 meV), which act collectively through the multivalent (multisite) anchoring to stabilize the ligand–nanoparticle complex (∼7 eV total binding energy) and offset the conformational and solvation penalties involved in this “wrapping” process. Molecular dynamics simulations show that the dendrimer is sufficiently flexible to tolerate the strained conformations and desolvation penalties involved in fully wrapping the particle, quantifying the subtle balance between covalent anchoring and noncovalent wrapping in the assembly of ligand–nanoparticle complexes. The computed preference for binding of a single dendrimer to the cluster reveals the prohibitively high dendrimer desolvation barrier (1.5 ± 0.5 eV) to form the alternative double-dendrimer structure. Finally, the models show formation of an additional electron transfer channel between nitrogen and gold for ligands with a central pyridine unit, which gives a stiff binding orientation and explains the recently measured larger interparticle distances for particles synthesized and interlinked using linear ligands with a central pyridine rather than a benzene moiety. The findings stress the importance of organic–inorganic interactions, the control of which is central to the rational engineering and eventual large-scale production of functional building blocks for nano(bio)electronics
Scanning the Potential Energy Surface for Synthesis of Dendrimer-Wrapped Gold Clusters: Design Rules for True Single-Molecule Nanostructures
The formation of true single-molecule complexes between organic ligands and nanoparticles is challenging and requires careful design of molecules with size, shape, and chemical properties tailored for the specific nanoparticle. Here we use computer simulations to describe the atomic-scale structure, dynamics, and energetics of ligand-mediated synthesis and interlinking of 1 nm gold clusters. The models help explain recent experimental results and provide insight into how multidentate thioether dendrimers can be employed for synthesis of true single-ligand–nanoparticle complexes and also nanoparticle–molecule–nanoparticle “dumbbell” nanostructures. Electronic structure calculations reveal the individually weak thioether–gold bonds (325 ± 36 meV), which act collectively through the multivalent (multisite) anchoring to stabilize the ligand–nanoparticle complex (∼7 eV total binding energy) and offset the conformational and solvation penalties involved in this “wrapping” process. Molecular dynamics simulations show that the dendrimer is sufficiently flexible to tolerate the strained conformations and desolvation penalties involved in fully wrapping the particle, quantifying the subtle balance between covalent anchoring and noncovalent wrapping in the assembly of ligand–nanoparticle complexes. The computed preference for binding of a single dendrimer to the cluster reveals the prohibitively high dendrimer desolvation barrier (1.5 ± 0.5 eV) to form the alternative double-dendrimer structure. Finally, the models show formation of an additional electron transfer channel between nitrogen and gold for ligands with a central pyridine unit, which gives a stiff binding orientation and explains the recently measured larger interparticle distances for particles synthesized and interlinked using linear ligands with a central pyridine rather than a benzene moiety. The findings stress the importance of organic–inorganic interactions, the control of which is central to the rational engineering and eventual large-scale production of functional building blocks for nano(bio)electronics
Negative Differential Photoconductance in Gold Nanoparticle Arrays in the Coulomb Blockade Regime
We investigate the photoconductance of gold nanoparticle arrays in the Coulomb blockade regime. Two-dimensional, hexagonal crystals of nanoparticles are produced by self-assembly. The nanoparticles are weakly coupled to their neighbors by a tunneling conductance. At low temperatures, the single electron charging energy of the nanoparticles dominates the conductance properties of the array. The Coulomb blockade of the nanoparticles can be lifted by optical excitation with a laser beam. The optical excitation leads to a localized heating of the arrays, which in turn gives rise to a local change in conductance and a redistribution of the overall electrical potential in the arrays. We introduce a dual-beam optical excitation technique to probe the distribution of the electrical potential in the nanoparticle array. A negative differential photoconductance is the direct consequence of the redistribution of the electrical potential upon lifting of the Coulomb blockade. On the basis of our model, we calculate the optically induced current from the dark current–voltage characteristics of the nanoparticle array. The calculations closely reproduce the experimental observations
Two Dimensional Chiral Networks Emerging from the Aryl−F···H Hydrogen-Bond-Driven Self-Assembly of Partially Fluorinated Rigid Molecular Structures
Two Dimensional Chiral Networks Emerging from the Aryl−F···H Hydrogen-Bond-Driven Self-Assembly of Partially Fluorinated Rigid Molecular Structure
Two-Dimensional Self-Assembly of Linear Molecular Rods at the Liquid/Solid Interface
We report on the synthesis and scanning tunneling microscopy (STM) studies of a series of linear molecular rods (1−5) comprising different numbers and/or spatial arrangements of perfluorinated benzene and benzene subunits interlinked with diacetylenes in the para position and decorated with or without terminal dodecyl chains. The molecules organize themselves into well-ordered 2D crystal structures at the liquid/solid interface through intermolecular and molecule−substrate interactions. Whereas the molecules substituted by dodecyl chains form the lamellar structures with alternating rigid core rows and alkyl chain rows, the unsubstituted ones change the orientation of the rigid backbones with respect to the lamellar axis. The molecular arrangement is not influenced by fluoro substituents on any phenyl ring of the backbone, which suggests that the interactions between the π-conjugated backbones are dominated by close packing rather than by the dipole moments of the rods or fluorine-based intermolecular interactions
Resonant Photoconductance of Molecular Junctions Formed in Gold Nanoparticle Arrays
We investigate the photoconductance properties of oligo(phenylene vinylene) (OPV) molecules in metal–molecule–metal junctions. The molecules are electrically contacted in a two-dimensional array of gold nanoparticles. The nanoparticles in such an array are separated by only few nanometers. This allows to bridge the distance between the nanoparticles with molecules considered as molecular wires such as OPV. We report on the photoconductance of electrically contacted OPV upon resonant optical excitation of the molecules. This resonant photoconductance is sublinear in laser intensity, which suggests that trap state dynamics of the optically excited charge carriers dominate the optoelectronic response
Two-Dimensional Self-Assembly of Linear Molecular Rods at the Liquid/Solid Interface
We report on the synthesis and scanning tunneling microscopy (STM) studies of a series of linear molecular rods (1−5) comprising different numbers and/or spatial arrangements of perfluorinated benzene and benzene subunits interlinked with diacetylenes in the para position and decorated with or without terminal dodecyl chains. The molecules organize themselves into well-ordered 2D crystal structures at the liquid/solid interface through intermolecular and molecule−substrate interactions. Whereas the molecules substituted by dodecyl chains form the lamellar structures with alternating rigid core rows and alkyl chain rows, the unsubstituted ones change the orientation of the rigid backbones with respect to the lamellar axis. The molecular arrangement is not influenced by fluoro substituents on any phenyl ring of the backbone, which suggests that the interactions between the π-conjugated backbones are dominated by close packing rather than by the dipole moments of the rods or fluorine-based intermolecular interactions
Scanning the Potential Energy Surface for Synthesis of Dendrimer-Wrapped Gold Clusters: Design Rules for True Single-Molecule Nanostructures
The formation of true single-molecule complexes between organic ligands and nanoparticles is challenging and requires careful design of molecules with size, shape, and chemical properties tailored for the specific nanoparticle. Here we use computer simulations to describe the atomic-scale structure, dynamics, and energetics of ligand-mediated synthesis and interlinking of 1 nm gold clusters. The models help explain recent experimental results and provide insight into how multidentate thioether dendrimers can be employed for synthesis of true single-ligand–nanoparticle complexes and also nanoparticle–molecule–nanoparticle “dumbbell” nanostructures. Electronic structure calculations reveal the individually weak thioether–gold bonds (325 ± 36 meV), which act collectively through the multivalent (multisite) anchoring to stabilize the ligand–nanoparticle complex (∼7 eV total binding energy) and offset the conformational and solvation penalties involved in this “wrapping” process. Molecular dynamics simulations show that the dendrimer is sufficiently flexible to tolerate the strained conformations and desolvation penalties involved in fully wrapping the particle, quantifying the subtle balance between covalent anchoring and noncovalent wrapping in the assembly of ligand–nanoparticle complexes. The computed preference for binding of a single dendrimer to the cluster reveals the prohibitively high dendrimer desolvation barrier (1.5 ± 0.5 eV) to form the alternative double-dendrimer structure. Finally, the models show formation of an additional electron transfer channel between nitrogen and gold for ligands with a central pyridine unit, which gives a stiff binding orientation and explains the recently measured larger interparticle distances for particles synthesized and interlinked using linear ligands with a central pyridine rather than a benzene moiety. The findings stress the importance of organic–inorganic interactions, the control of which is central to the rational engineering and eventual large-scale production of functional building blocks for nano(bio)electronics
