32 research outputs found

    Probing Structural Perturbation in a Bent Molecular Crystal with Synchrotron Infrared Microspectroscopy and Periodic Density Functional Theory Calculations

    No full text
    The range of unit cell orientations generated at the kink of a bent single crystal poses unsurmountable challenges with diffraction analysis and limits the insight into the molecular-scale mechanism of bending. On a plastically bent crystal of hexachlorobenzene, it is demonstrated here that spatially resolved microfocus infrared spectroscopy using synchrotron radiation can be applied in conjunction with periodic density functional theory calculations to predict spectral changes or to extract information on structural changes that occur as a consequence of bending. The approach reproduces well the observed trends, such as the wall effects, and provides estimations of the vibrational shifts, unit cell deformations, and intramolecular parameters. Generally, expansion of the lattice induces red-shift while compression induces larger blue-shift of the characteristic ν­(C–C) and ν­(C–Cl) modes. Uniform or non-uniform expansion or contraction of the unit cell of 0.1 Å results in shifts of several cm–1, whereas deformation of the cell of 0.5° at the unique angle causes shifts of –1. Since this approach does not include parameters related to the actual stimulus by which the deformation has been induced, it can be generalized and applied to other mechanically, photochemically, or thermally bent crystals

    Biomimetic Crystalline Actuators: Structure–Kinematic Aspects of the Self-Actuation and Motility of Thermosalient Crystals

    No full text
    While self-actuation and motility are habitual for humans and nonsessile animals, they are hardly intuitive for simple, lifeless, homogeneous objects. Among mechanically responsive materials, the few accidentally discovered examples of crystals that when heated suddenly jump, propelling themselves to distances that can reach thousands of times their own size in less than 1 ms, provide the most impressive display of the conversion of heat into mechanical work. Such thermosalient crystals are biomimetic, nonpolymeric self-actuators par excellence. Yet, due to the exclusivity and incongruity of the phenomenon, as well as because of the unavailability of ready analytical methodology for its characterization, the reasons behind this colossal self-actuation remain unexplained. Aimed at unraveling the mechanistic aspects of the related processes, herein we establish the first systematic assessment of the interplay among the thermodynamic, kinematic, structural, and macroscopic factors driving the thermosalient phenomenon. The collective results are consistent with a latent but very rapid anisotropic unit cell deformation in a two-stage process that ultimately results in crystal explosion, separation of debris, or crystal reshaping. The structural perturbations point to a mechanism similar to phase transitions of the martensitic family

    Probing Structural Perturbation in a Bent Molecular Crystal with Synchrotron Infrared Microspectroscopy and Periodic Density Functional Theory Calculations

    No full text
    The range of unit cell orientations generated at the kink of a bent single crystal poses unsurmountable challenges with diffraction analysis and limits the insight into the molecular-scale mechanism of bending. On a plastically bent crystal of hexachlorobenzene, it is demonstrated here that spatially resolved microfocus infrared spectroscopy using synchrotron radiation can be applied in conjunction with periodic density functional theory calculations to predict spectral changes or to extract information on structural changes that occur as a consequence of bending. The approach reproduces well the observed trends, such as the wall effects, and provides estimations of the vibrational shifts, unit cell deformations, and intramolecular parameters. Generally, expansion of the lattice induces red-shift while compression induces larger blue-shift of the characteristic ν­(C–C) and ν­(C–Cl) modes. Uniform or non-uniform expansion or contraction of the unit cell of 0.1 Å results in shifts of several cm–1, whereas deformation of the cell of 0.5° at the unique angle causes shifts of –1. Since this approach does not include parameters related to the actual stimulus by which the deformation has been induced, it can be generalized and applied to other mechanically, photochemically, or thermally bent crystals

    Biomimetic Crystalline Actuators: Structure–Kinematic Aspects of the Self-Actuation and Motility of Thermosalient Crystals

    No full text
    While self-actuation and motility are habitual for humans and nonsessile animals, they are hardly intuitive for simple, lifeless, homogeneous objects. Among mechanically responsive materials, the few accidentally discovered examples of crystals that when heated suddenly jump, propelling themselves to distances that can reach thousands of times their own size in less than 1 ms, provide the most impressive display of the conversion of heat into mechanical work. Such thermosalient crystals are biomimetic, nonpolymeric self-actuators par excellence. Yet, due to the exclusivity and incongruity of the phenomenon, as well as because of the unavailability of ready analytical methodology for its characterization, the reasons behind this colossal self-actuation remain unexplained. Aimed at unraveling the mechanistic aspects of the related processes, herein we establish the first systematic assessment of the interplay among the thermodynamic, kinematic, structural, and macroscopic factors driving the thermosalient phenomenon. The collective results are consistent with a latent but very rapid anisotropic unit cell deformation in a two-stage process that ultimately results in crystal explosion, separation of debris, or crystal reshaping. The structural perturbations point to a mechanism similar to phase transitions of the martensitic family

    Biomimetic Crystalline Actuators: Structure–Kinematic Aspects of the Self-Actuation and Motility of Thermosalient Crystals

    No full text
    While self-actuation and motility are habitual for humans and nonsessile animals, they are hardly intuitive for simple, lifeless, homogeneous objects. Among mechanically responsive materials, the few accidentally discovered examples of crystals that when heated suddenly jump, propelling themselves to distances that can reach thousands of times their own size in less than 1 ms, provide the most impressive display of the conversion of heat into mechanical work. Such thermosalient crystals are biomimetic, nonpolymeric self-actuators par excellence. Yet, due to the exclusivity and incongruity of the phenomenon, as well as because of the unavailability of ready analytical methodology for its characterization, the reasons behind this colossal self-actuation remain unexplained. Aimed at unraveling the mechanistic aspects of the related processes, herein we establish the first systematic assessment of the interplay among the thermodynamic, kinematic, structural, and macroscopic factors driving the thermosalient phenomenon. The collective results are consistent with a latent but very rapid anisotropic unit cell deformation in a two-stage process that ultimately results in crystal explosion, separation of debris, or crystal reshaping. The structural perturbations point to a mechanism similar to phase transitions of the martensitic family

    Mimicking the Intradiol Catechol Cleavage Activity of Catechol Dioxygenase by High-Spin Iron(III) Complexes of a New Class of a Facially Bound [N<sub>2</sub>O] Ligand

    No full text
    A series of high-spin iron(III) complexes, {N-R-2-[(pyridin-2-ylmethyl)amino]acetamide}FeCl3 [R = mesityl (1b), 2,6-Et2C6H3 (2b), and 2,6-i-Pr2C6H3 (3b)], that functionally emulate the intradiol catechol dioxygenase enzyme are reported. In particular, these enzyme mimics, 1b, 2b, and 3b, which utilized molecular oxygen in carrying out the intradiol catechol cleavage of 3,5-di-tert-butylcatechol with high regioselectivity (ca. 81−85%) at room temperature under ambient conditions, were designed by employing a new class of a facially bound [N2O] ligand, namely, N-R-2-[(pyridin-2-ylmethyl)amino]acetamide [R = mesityl (1a), 2,6-Et2C6H3 (2a), and 2,6-i-Pr2C6H3 (3a)]. The density functional theory studies revealed that the intradiol catechol cleavage reaction proceeded by an iron(III) peroxo intermediate that underwent 1,2-Criegee rearrangement to yield the intradiol catechol cleaved products analogous to the native enzyme

    Biomimetic Crystalline Actuators: Structure–Kinematic Aspects of the Self-Actuation and Motility of Thermosalient Crystals

    No full text
    While self-actuation and motility are habitual for humans and nonsessile animals, they are hardly intuitive for simple, lifeless, homogeneous objects. Among mechanically responsive materials, the few accidentally discovered examples of crystals that when heated suddenly jump, propelling themselves to distances that can reach thousands of times their own size in less than 1 ms, provide the most impressive display of the conversion of heat into mechanical work. Such thermosalient crystals are biomimetic, nonpolymeric self-actuators par excellence. Yet, due to the exclusivity and incongruity of the phenomenon, as well as because of the unavailability of ready analytical methodology for its characterization, the reasons behind this colossal self-actuation remain unexplained. Aimed at unraveling the mechanistic aspects of the related processes, herein we establish the first systematic assessment of the interplay among the thermodynamic, kinematic, structural, and macroscopic factors driving the thermosalient phenomenon. The collective results are consistent with a latent but very rapid anisotropic unit cell deformation in a two-stage process that ultimately results in crystal explosion, separation of debris, or crystal reshaping. The structural perturbations point to a mechanism similar to phase transitions of the martensitic family

    Biomimetic Crystalline Actuators: Structure–Kinematic Aspects of the Self-Actuation and Motility of Thermosalient Crystals

    No full text
    While self-actuation and motility are habitual for humans and nonsessile animals, they are hardly intuitive for simple, lifeless, homogeneous objects. Among mechanically responsive materials, the few accidentally discovered examples of crystals that when heated suddenly jump, propelling themselves to distances that can reach thousands of times their own size in less than 1 ms, provide the most impressive display of the conversion of heat into mechanical work. Such thermosalient crystals are biomimetic, nonpolymeric self-actuators par excellence. Yet, due to the exclusivity and incongruity of the phenomenon, as well as because of the unavailability of ready analytical methodology for its characterization, the reasons behind this colossal self-actuation remain unexplained. Aimed at unraveling the mechanistic aspects of the related processes, herein we establish the first systematic assessment of the interplay among the thermodynamic, kinematic, structural, and macroscopic factors driving the thermosalient phenomenon. The collective results are consistent with a latent but very rapid anisotropic unit cell deformation in a two-stage process that ultimately results in crystal explosion, separation of debris, or crystal reshaping. The structural perturbations point to a mechanism similar to phase transitions of the martensitic family

    Probing Structural Perturbation in a Bent Molecular Crystal with Synchrotron Infrared Microspectroscopy and Periodic Density Functional Theory Calculations

    No full text
    The range of unit cell orientations generated at the kink of a bent single crystal poses unsurmountable challenges with diffraction analysis and limits the insight into the molecular-scale mechanism of bending. On a plastically bent crystal of hexachlorobenzene, it is demonstrated here that spatially resolved microfocus infrared spectroscopy using synchrotron radiation can be applied in conjunction with periodic density functional theory calculations to predict spectral changes or to extract information on structural changes that occur as a consequence of bending. The approach reproduces well the observed trends, such as the wall effects, and provides estimations of the vibrational shifts, unit cell deformations, and intramolecular parameters. Generally, expansion of the lattice induces red-shift while compression induces larger blue-shift of the characteristic ν­(C–C) and ν­(C–Cl) modes. Uniform or non-uniform expansion or contraction of the unit cell of 0.1 Å results in shifts of several cm<sup>–1</sup>, whereas deformation of the cell of 0.5° at the unique angle causes shifts of <0.5 cm<sup>–1</sup>. Since this approach does not include parameters related to the actual stimulus by which the deformation has been induced, it can be generalized and applied to other mechanically, photochemically, or thermally bent crystals
    corecore