5,621 research outputs found

    Generalized contact process with two symmetric absorbing states in two dimensions

    Get PDF
    We explore the two-dimensional generalized contact process with two absorbing states by means of large-scale Monte-Carlo simulations. In part of the phase diagram, an infinitesimal creation rate of active sites between inactive domains is sufficient to take the system from the inactive phase to the active phase. The system therefore displays two different nonequilibrium phase transitions. The critical behavior of the generic transition is compatible with the generalized voter (GV) universality class, implying that the symmetry-breaking and absorbing transitions coincide. In contrast, the transition at zero domain-boundary activation rate is not critical.Comment: 7 pages, 7 eps figures included, final version as publishe

    Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction.

    Get PDF
    Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al(3+) plays a key role in stabilizing the cubic LLZO. However, it is found that the site preference of Al in 24d position hinders the three dimensionally connected Li ion movement when heavily doped according to the structural refinement and the DFT calculations. In this report, we demonstrate that the multi-doping using additional Ta dopants into the Al-doped LLZO shifts the most energetically favorable sites of Al in the crystal structure from 24d to 96 h Li site, thereby providing more open space for Li ion transport. As a result of these synergistic effects, the multi-doped LLZO shows about three times higher ionic conductivity of 6.14 × 10(-4) S cm(-1) than that of the singly-doped LLZO with a much less efforts in stabilizing cubic phases in the synthetic condition

    Nonequilibrium phase transition on a randomly diluted lattice

    Get PDF
    We show that the interplay between geometric criticality and dynamical fluctuations leads to a novel universality class of the contact process on a randomly diluted lattice. The nonequilibrium phase transition across the percolation threshold of the lattice is characterized by unconventional activated (exponential) dynamical scaling and strong Griffiths effects. We calculate the critical behavior in two and three space dimensions, and we also relate our results to the recently found infinite-randomness fixed point in the disordered one-dimensional contact process.Comment: 4 pages, 1 eps figure, final version as publishe

    Absorbing-state phase transitions on percolating lattices

    Get PDF
    We study nonequilibrium phase transitions of reaction-diffusion systems defined on randomly diluted lattices, focusing on the transition across the lattice percolation threshold. To develop a theory for this transition, we combine classical percolation theory with the properties of the supercritical nonequilibrium system on a finite-size cluster. In the case of the contact process, the interplay between geometric criticality due to percolation and dynamical fluctuations of the nonequilibrium system leads to a new universality class. The critical point is characterized by ultraslow activated dynamical scaling and accompanied by strong Griffiths singularities. To confirm the universality of this exotic scaling scenario we also study the generalized contact process with several (symmetric) absorbing states, and we support our theory by extensive Monte-Carlo simulations.Comment: 11 pages, 10 eps figures included, final version as publishe

    In Vitro Chemosensitivity Using the Histoculture Drug Response Assay in Human Epithelial Ovarian Cancer

    Get PDF
    The choice of chemotherapeutic drugs to treat patients with epithelial ovarian cancer has not depended on individual patient characteristics. We have investigated the correlation between in vitro chemosensitivity, as determined by the histoculture drug response assay (HDRA), and clinical responses in epithelial ovarian cancer. Fresh tissue samples were obtained from 79 patients with epithelial ovarian cancer. The sensitivity of these samples to 11 chemotherapeutic agents was tested using the HDRA method according to established methods, and we analyzed the results retrospectively. HDRA showed that they were more chemosensitive to carboplatin, topotecan and belotecan, with inhibition rates of 49.2%, 44.7%, and 39.7%, respectively, than to cisplatin, the traditional drug of choice in epithelial ovarian cancer. Among the 37 patients with FIGO stage Ⅲ/Ⅳ serous adenocarcinoma who were receiving carboplatin combined with paclitaxel, those with carboplatin-sensitive samples on HDRA had a significantly longer median disease-free interval than patients with carboplatin- resistant samples (23.2 vs. 13.8 months, p<0.05), but median overall survival did not differ significantly (60.4 vs. 37.3 months, p=0.621). In conclusion, this study indicates that HDRA could provide useful information for designing individual treatment strategies in patients with epithelial ovarian cancer

    Development of a hybrid magnetic resonance/computed tomography-compatible phantom for magnetic resonance guided radiotherapy

    Get PDF
    The purpose of the present study was to develop a hybrid magnetic resonance/computed tomography (MR/CT)-compatible phantom and tissue-equivalent materials for each MR and CT image. Therefore, the essential requirements necessary for the development of a hybrid MR/CT-compatible phantom were determined and the development process is described. A total of 12 different tissue-equivalent materials for each MR and CT image were developed from chemical components. The uniformity of each sample was calculated. The developed phantom was designed to use 14 plugs that contained various tissue-equivalent materials. Measurement using the developed phantom was performed using a 3.0-T scanner with 32 channels and a Somatom Sensation 64. The maximum percentage difference of the signal intensity (SI) value on MR images after adding K2CO3 was 3.31%. Additionally, the uniformity of each tissue was evaluated by calculating the percent image uniformity (%PIU) of the MR image, which was 82.18 ±1.87% with 83% acceptance, and the average circular-shaped regions of interest (ROIs) on CT images for all samples were within ±5 Hounsfield units (HU). Also, dosimetric evaluation was performed. The percentage differences of each tissue-equivalent sample for average dose ranged from -0.76 to 0.21%. A hybrid MR/CT-compatible phantom for MR and CT was investigated as the first trial in this field of radiation oncology and medical physics

    Epigenetic regulation of Dlg1, via Kaiso, alters mitotic spindle polarity and promotes intestinal tumourigenesis

    Get PDF
    Both alterations to the epigenome and loss of polarity have been linked to cancer initiation, progression and metastasis. It has previously been demonstrated that loss of the epigenetic reader protein Kaiso suppresses intestinal tumourigenesis in the Apc+/min mouse model, in which altered polarity plays a key role. Thus, we investigated the link between Kaiso deficiency, polarity and suppression of intestinal tumourigenesis. We used Kaiso deficient mice to conditionally delete Apc within the intestinal epithelia and demonstrated up-regulation of the spindle polarity genes Dlg1 and Dlgap1. To understand the role of Dlg1 we generated Villin-creApc+/minDlg1flx/flx Kaiso-/y mice to analyse gene expression, survival, tumour burden and spindle orientation. In vivo analysis of the Dlg1 deficient intestine revealed improper orientation of mitotic spindles and a decreased rate of cellular migration. Loss of Dlg1 decreased survival in Apc+/min mice, validating its role as a tumour suppressor in the intestine. Significantly the increased survival of Apc+/minKaisoy/- mice was shown to be dependent on Dlg1 expression. Taken together this data indicates that maintenance of spindle polarity in the intestinal crypt requires appropriate regulation of Dlg1 expression. As Dlg1 loss leads to incorrect spindle orientation and a delay in cells transiting the intestinal crypt. We propose that the delayed exit from the crypt increases the window in which spontaneous mutations can become fixed, producing a 'tumour-permissive' environment, without an increase in mutation rate. Implications: Loss of mitotic spindle polarity delays the exit of cells from the intestinal crypt and promotes a tumourigenic environment

    Chlorin e6 Prevents ADP-Induced Platelet Aggregation by Decreasing PI3K-Akt Phosphorylation and Promoting cAMP Production

    Get PDF
    A number of reagents that prevent thrombosis have been developed but were found to have serious side effects. Therefore, we sought to identify complementary and alternative medicinal materials that are safe and have long-term efficacy. In the present studies, we have assessed the ability of chlorine e6 (CE6) to inhibit ADP-induced aggregation of rat platelets and elucidated the underlying mechanism. CE6 inhibited platelet aggregation induced by 10 µM ADP in a concentration-dependent manner and decreased intracellular calcium mobilization and granule secretion (i.e., ATP and serotonin release). Western blotting revealed that CE6 strongly inhibited the phosphorylations of PI3K, Akt, c-Jun N-terminal kinase (JNK), and different mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase 1/2 (ERK1/2) as well as p38-MAPK. Our study also demonstrated that CE6 significantly elevated intracellular cAMP levels and decreased thromboxane A2 formation in a concentration-dependent manner. Furthermore, we determined that CE6 initiated the activation of PKA, an effector of cAMP. Taken together, our findings indicate that CE6 may inhibit ADP-induced platelet activation by elevating cAMP levels and suppressing PI3K/Akt activity. Finally, these results suggest that CE6 could be developed as therapeutic agent that helps prevent thrombosis and ischemia

    Absorbing state transitions in clean and disordered lattice models

    Get PDF
    Nonequilibrium systems can undergo continuous phase transitions between different steady states. These transitions are characterized by collective fluctuations over large distances and long times similar to the behavior of equilibrium critical points. They also can be divided into different universality classes according to their critical behavior. This dissertation considers two types of nonequilibrium transitions. First study concerns absorbing state transitions on a randomly diluted lattice. Second study deals with nonequilibrium models with several absorbing states. We investigate two specific nonequilibrium lattice models, i.e., the contact process and the generalized contact process by means of both theoretical and computational approaches. In section 1, we introduce the basic arguments and theories to support our investigations for both problems. In sections 2 and 3, we investigate nonequilibrium phase transitions of the contact process and the generalized contact process on a percolating lattice, focusing on the transition across the lattice percolation threshold. In this study, we show that the interplay between geometric criticality due to percolation and dynamical fluctuations of the nonequilibrium system leads to a new universality class. The critical point is characterized by ultra-slow activated dynamical scaling and accompanied by strong Griffiths singularities. We support our theory by extensive Monte-Carlo simulations. In sections 4 and 5, we investigate the generalized contact process on one and two-dimensional lattices. We treat the creation rate of active sites between inactive domains as an independent parameter. It turns out that this model has an unusual phase diagram with two different nonequilibrium phase transitions. The special point separating them shares some characteristics with a multicritical point. For one dimension, a small boundary rate takes the system from the directed percolation universality class to the parity-conserved class. For two dimensions, the critical behavior on the generic transition line is of mean-field type with logarithmic corrections suggesting that the two-dimensional generalized contact process is in the generalized voter universality class --Abstract, page iv

    Phase Transitions of the Generalized Contact Process with Two Absorbing States

    Get PDF
    We investigate the generalized contact process with two absorbing states in one space dimension by means of large-scale Monte Carlo simulations. Treating the creation rate of active sites between inactive domains as an independent parameter leads to a rich phase diagram. In addition to the conventional active and inactive phases we find a parameter region where the simple contact process is inactive, but an infinitesimal creation rate at the boundary between inactive domains is sufficient to take the system into the active phase. Thus, the generalized contact process has two different phase transition lines. The point separating them shares some characteristics with a multicritical point. We also study in detail the critical behaviors of these transitions and their universality
    corecore