17,667 research outputs found

    Electron-Phonon Interactions for Optical Phonon Modes in Few-Layer Graphene

    Full text link
    We present a first-principles study of the electron-phonon (e-ph) interactions and their contributions to the linewidths for the optical phonon modes at Γ\Gamma and K in one to three-layer graphene. It is found that due to the interlayer coupling and the stacking geometry, the high-frequency optical phonon modes in few-layer graphene couple with different valence and conduction bands, giving rise to different e-ph interaction strengths for these modes. Some of the multilayer optical modes derived from the Γ\Gamma-E2gE_{2g} mode of monolayer graphene exhibit slightly higher frequencies and much reduced linewidths. In addition, the linewidths of K-A1A'_1 related modes in multilayers depend on the stacking pattern and decrease with increasing layer numbers.Comment: 6 pages,5 figures, submitted to PR

    Determining Absorption, Emissivity Reduction, and Local Suppression Coefficients inside Sunspots

    Full text link
    The power of solar acoustic waves is reduced inside sunspots mainly due to absorption, emissivity reduction, and local suppression. The coefficients of these power-reduction mechanisms can be determined by comparing time-distance cross-covariances obtained from sunspots and from the quiet Sun. By analyzing 47 active regions observed by SOHO/MDI without using signal filters, we have determined the coefficients of surface absorption, deep absorption, emissivity reduction, and local suppression. The dissipation in the quiet Sun is derived as well. All of the cross-covariances are width corrected to offset the effect of dispersion. We find that absorption is the dominant mechanism of the power deficit in sunspots for short travel distances, but gradually drops to zero at travel distances longer than about 6 degrees. The absorption in sunspot interiors is also significant. The emissivity-reduction coefficient ranges from about 0.44 to 1.00 within the umbra and 0.29 to 0.72 in the sunspot, and accounts for only about 21.5% of the umbra's and 16.5% of the sunspot's total power reduction. Local suppression is nearly constant as a function of travel distance with values of 0.80 and 0.665 for umbrae and whole sunspots respectively, and is the major cause of the power deficit at large travel distances.Comment: 14 pages, 21 Figure

    Beyond the local approximation to exchange and correlation: the role of the Laplacian of the density in the energy density of Si

    Full text link
    We model the exchange-correlation (XC) energy density of the Si crystal and atom as calculated by variational Monte Carlo (VMC) methods with a gradient analysis beyond the local density approximation (LDA). We find the Laplacian of the density to be an excellent predictor of the discrepancy between VMC and LDA energy densities in each system. A simple Laplacian-based correction to the LDA energy density is developed by means of a least square fit to the VMC XC energy density for the crystal, which fits the homogeneous electron gas and Si atom without further effort.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
    corecore