239 research outputs found
On the combinatorics of sparsification
Background: We study the sparsification of dynamic programming folding
algorithms of RNA structures. Sparsification applies to the mfe-folding of RNA
structures and can lead to a significant reduction of time complexity. Results:
We analyze the sparsification of a particular decomposition rule, ,
that splits an interval for RNA secondary and pseudoknot structures of fixed
topological genus. Essential for quantifying the sparsification is the size of
its so called candidate set. We present a combinatorial framework which allows
by means of probabilities of irreducible substructures to obtain the expected
size of the set of -candidates. We compute these expectations for
arc-based energy models via energy-filtered generating functions (GF) for RNA
secondary structures as well as RNA pseudoknot structures. For RNA secondary
structures we also consider a simplified loop-energy model. This combinatorial
analysis is then compared to the expected number of -candidates
obtained from folding mfe-structures. In case of the mfe-folding of RNA
secondary structures with a simplified loop energy model our results imply that
sparsification provides a reduction of time complexity by a constant factor of
91% (theory) versus a 96% reduction (experiment). For the "full" loop-energy
model there is a reduction of 98% (experiment).Comment: 27 pages, 12 figure
Large components in random induced subgraphs of n-cubes
In this paper we study random induced subgraphs of the binary -cube,
. This random graph is obtained by selecting each -vertex with
independent probability . Using a novel construction of
subcomponents we study the largest component for
, where , . We prove that there exists a.s. a unique largest
component . We furthermore show that , and for , holds.
This improves the result of \cite{Bollobas:91} where constant is
considered. In particular, in case of , our
analysis implies that a.s. a unique giant component exists.Comment: 18 Page
Random 3-noncrossing partitions
In this paper, we introduce polynomial time algorithms that generate random
3-noncrossing partitions and 2-regular, 3-noncrossing partitions with uniform
probability. A 3-noncrossing partition does not contain any three mutually
crossing arcs in its canonical representation and is 2-regular if the latter
does not contain arcs of the form . Using a bijection of Chen {\it et
al.} \cite{Chen,Reidys:08tan}, we interpret 3-noncrossing partitions and
2-regular, 3-noncrossing partitions as restricted generalized vacillating
tableaux. Furthermore, we interpret the tableaux as sampling paths of
Markov-processes over shapes and derive their transition probabilities.Comment: 17 pages, 7 figure
- β¦