209 research outputs found

    A toral diffeomorphism with a non-polygonal rotation set

    Full text link
    We construct a diffeomorphism of the two-dimensional torus which is isotopic to the identity and whose rotation set is not a polygon

    Rotation sets of billiards with one obstacle

    Full text link
    We investigate the rotation sets of billiards on the mm-dimensional torus with one small convex obstacle and in the square with one small convex obstacle. In the first case the displacement function, whose averages we consider, measures the change of the position of a point in the universal covering of the torus (that is, in the Euclidean space), in the second case it measures the rotation around the obstacle. A substantial part of the rotation set has usual strong properties of rotation sets

    A Classification of Minimal Sets of Torus Homeomorphisms

    Full text link
    We provide a classification of minimal sets of homeomorphisms of the two-torus, in terms of the structure of their complement. We show that this structure is exactly one of the following types: (1) a disjoint union of topological disks, or (2) a disjoint union of essential annuli and topological disks, or (3) a disjoint union of one doubly essential component and bounded topological disks. Periodic bounded disks can only occur in type 3. This result provides a framework for more detailed investigations, and additional information on the torus homeomorphism allows to draw further conclusions. In the non-wandering case, the classification can be significantly strengthened and we obtain that a minimal set other than the whole torus is either a periodic orbit, or the orbit of a periodic circloid, or the extension of a Cantor set. Further special cases are given by torus homeomorphisms homotopic to an Anosov, in which types 1 and 2 cannot occur, and the same holds for homeomorphisms homotopic to the identity with a rotation set which has non-empty interior. If a non-wandering torus homeomorphism has a unique and totally irrational rotation vector, then any minimal set other than the whole torus has to be the extension of a Cantor set.Comment: Published in Mathematische Zeitschrift, June 2013, Volume 274, Issue 1-2, pp 405-42

    Strictly Toral Dynamics

    Full text link
    This article deals with nonwandering (e.g. area-preserving) homeomorphisms of the torus T2\mathbb{T}^2 which are homotopic to the identity and strictly toral, in the sense that they exhibit dynamical properties that are not present in homeomorphisms of the annulus or the plane. This includes all homeomorphisms which have a rotation set with nonempty interior. We define two types of points: inessential and essential. The set of inessential points ine(f)ine(f) is shown to be a disjoint union of periodic topological disks ("elliptic islands"), while the set of essential points ess(f)ess(f) is an essential continuum, with typically rich dynamics (the "chaotic region"). This generalizes and improves a similar description by J\"ager. The key result is boundedness of these "elliptic islands", which allows, among other things, to obtain sharp (uniform) bounds of the diffusion rates. We also show that the dynamics in ess(f)ess(f) is as rich as in T2\mathbb{T}^2 from the rotational viewpoint, and we obtain results relating the existence of large invariant topological disks to the abundance of fixed points.Comment: Incorporates suggestions and corrections by the referees. To appear in Inv. Mat

    Statistical stability of equilibrium states for interval maps

    Full text link
    We consider families of multimodal interval maps with polynomial growth of the derivative along the critical orbits. For these maps Bruin and Todd have shown the existence and uniqueness of equilibrium states for the potential ϕt:xtlogDf(x)\phi_t:x\mapsto-t\log|Df(x)|, for tt close to 1. We show that these equilibrium states vary continuously in the weak^* topology within such families. Moreover, in the case t=1t=1, when the equilibrium states are absolutely continuous with respect to Lebesgue, we show that the densities vary continuously within these families.Comment: More details given and the appendices now incorporated into the rest of the pape

    Piecewise Linear Models for the Quasiperiodic Transition to Chaos

    Full text link
    We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non-trivial but essentially solvable models for the phenomenon of mode-locking and the quasi-periodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non-zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low-order spline approximations to the classic ``sine-circle'' map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction.Comment: 75 pages, plain TeX, 47 figures (available on request

    Multicomponent dynamical systems: SRB measures and phase transitions

    Full text link
    We discuss a notion of phase transitions in multicomponent systems and clarify relations between deterministic chaotic and stochastic models of this type of systems. Connections between various definitions of SRB measures are considered as well.Comment: 13 pages, LaTeX 2
    corecore