557 research outputs found

    Detection of polarization from the E^4\Pi-A^4\Pi system of FeH in sunspot spectra

    Full text link
    Here we report the first detection of polarization signals induced by the Zeeman effect in spectral lines of the E^4\Pi-A^4\Pi system of FeH located around 1.6 μ\mum. Motivated by the tentative detection of this band in the intensity spectrum of late-type dwarfs, we have investigated the full Stokes sunspot spectrum finding circular and linear polarization signatures that we associate with the FeH lines of the E^4\Pi-A^4\Pi band system. We investigate the Zeeman effect in these molecular transitions pointing out that in Hund's case (a) coupling the effective Land\'e factors are never negative. For this reason, the fact that our spectropolarimetric observations indicate that the Land\'e factors of pairs of FeH lines have opposite signs, prompt us to conclude that the E^4\Pi-A^4\Pi system must be in intermediate angular momentum coupling between Hund's cases (a) and (b). We emphasize that theoretical and/or laboratory investigations of this molecular system are urgently needed for exploiting its promising diagnostic capabilities.Comment: 11 pages, 4 figures, accepted for publication in Astrophysical Journal Letter

    Error propagation in polarimetric demodulation

    Full text link
    The polarization analysis of the light is typically carried out using modulation schemes. The light of unknown polarization state is passed through a set of known modulation optics and a detector is used to measure the total intensity passing the system. The modulation optics is modified several times and, with the aid of such several measurements, the unknown polarization state of the light can be inferred. How to find the optimal demodulation process has been investigated in the past. However, since the modulation matrix has to be measured for a given instrument and the optical elements can present problems of repeatability, some uncertainty is present in the elements of the modulation matrix and/or covariances between these elements. We analyze in detail this issue, presenting analytical formulae for calculating the covariance matrix produced by the propagation of such uncertainties on the demodulation matrix, on the inferred Stokes parameters and on the efficiency of the modulation process. We demonstrate that, even if the covariance matrix of the modulation matrix is diagonal, the covariance matrix of the demodulation matrix is, in general, non-diagonal because matrix inversion is a nonlinear operation. This propagates through the demodulation process and induces correlations on the inferred Stokes parameters.Comment: 18 pages, 3 figures, accepted for publication in Applied Optic

    Three-dimensional simulations of solar magneto-convection including effects of partial ionization

    Full text link
    Over the last decades, realistic 3D radiative-MHD simulations have become the dominant theoretical tool for understanding the complex interactions between the plasma and the magnetic field on the Sun. Most of such simulations are based on approximations of magnetohydrodynamics, without directly considering the consequences of the very low degree of ionization of the solar plasma in the photosphere and bottom chromosphere. The presence of large amount of neutrals leads to a partial decoupling of the plasma and the magnetic field. As a consequence of that, a series of non-ideal effects (ambipolar diffusion, Hall effect and battery effect) arises. The ambipolar effect is the dominant one in the solar chromosphere. Here we report on the first three-dimensional realistic simulations of magneto-convection including ambipolar diffusion and battery effects. The simulations are done using the newly developed Mancha3D code. Our results reveal that ambipolar diffusion causes measurable effects on the amplitudes of waves excited by convection in the simulations, on the absorption of Poynting flux and heating and on the formation of chromospheric structures. We provide a low limit on the chromospheric temperature increase due to the ambipolar effect using the simulations with battery-excited dynamo fields.Comment: To appear in Astronomy & Astrophysic

    Numerical simulations of quiet Sun magnetic fields seeded by Biermann battery

    Full text link
    The magnetic fields of the quiet Sun cover at any time more than 90\% of its surface and their magnetic energy budget is crucial to explain the thermal structure of the solar atmosphere. One of the possible origins of these fields is due to the action of local dynamo in the upper convection zone of the Sun. Existing simulations of the local solar dynamo require an initial seed field, and sufficiently high spatial resolution, in order to achieve the amplification of the seed field to the observed values in the quiet Sun. Here we report an alternative model of seeding based on the action of the Bierman battery effect. This effect generates a magnetic field due to the local imbalances in electron pressure in the partially ionized solar plasma. We show that the battery effect self-consistently creates from zero an initial seed field of a strength of the order of micro G, and together with dynamo amplification, allows the generation of quiet Sun magnetic fields of a similar strength to those from solar observations.Comment: To appear in Astronomy & Astrophysic

    High frequency waves in the corona due to null points

    Full text link
    This work aims to understand the behavior of non-linear waves in the vicinity of a coronal null point. In previous works we have showed that high frequency waves are generated in such magnetic configuration. This paper studies those waves in detail in order to provide a plausible explanation of their generation. We demonstrate that slow magneto-acoustic shock waves generated in the chromosphere propagate through the null point and produce a train of secondary shocks that escape along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 mHz. We speculate that this frequency may be sensitive to the atmospheric parameters in the corona and therefore can be used to probe the structure of this solar layer

    Wave propagation and shock formation in different magnetic structures

    Full text link
    Velocity oscillations "measured" simultaneously at the photosphere and the chromosphere -from time series of spectropolarimetric data in the 10830 A region- of different solar magnetic features allow us to study the properties of wave propagation as a function of the magnetic flux of the structure (i.e. two different-sized sunspots, a tiny pore and a facular region). While photospheric oscillations have similar characteristics everywhere, oscillations measured at chromospheric heights show different amplitudes, frequencies and stages of shock development depending on the observed magnetic feature. The analysis of the power and the phase spectra, together with simple theoretical modeling, lead to a series of results concerning wave propagation within the range of heights of this study. We find that, while the atmospheric cut-off frequency and the propagation properties of the different oscillating modes depend on the magnetic feature, in all the cases the power that reaches the high chromosphere above the atmospheric cut-off comes directly from the photosphere by means of linear vertical wave propagation rather than from non-linear interaction of modes.Comment: Accepted for publication in The Astrophysical Journal. 29 pages, 9 figures, 12pt, preprin
    corecore