26 research outputs found

    Epiregulin (EPR) and amphiregulin (AR) inhibited cell death in Neuro2a cells.

    No full text
    <p>The cells were pretreated with EPR (0.01, 0.03, 0.1, and 1 nM) and AR (0.001, 0.01, 0.03, 0.1, and 1 nM) for 1 h and subsequently treated according to the indicated conditions. (A) EPR reduced the release of lactate dehydrogenase (LDH) at 48 h after Tm (1 μg/mL) treatment. (B) AR reduced the release of LDH at 48 h after Tm (1 μg/mL) treatment. The LDH released into the medium was expressed as a percentage of the control value. The data represent the average of 4 independent experiments for each sample. *p < 0.05.</p

    Stress-Induced Neuroprotective Effects of Epiregulin and Amphiregulin

    No full text
    <div><p>Members of the epidermal growth factor family play important roles in the regulation of cell growth, proliferation, and survival. However, the specific roles of each epidermal growth factor family member with respect to brain injury are not well understood. Gene chip assay screens have revealed drastic increases in the expression of the epidermal growth factor family members amphiregulin and epiregulin following lipopolysaccharide stimulation, which activates an immune response. Both immune activity and endoplasmic reticulum stress are activated during cerebral ischemia. We found that the expression levels of amphiregulin and epiregulin were significantly increased under conditions of cerebral ischemia. Because endoplasmic reticulum stress increased the expression of amphiregulin and epiregulin in glial cells, endoplasmic reticulum stress may be a key mediatory factor of pathophysiological activity. Recombinant epiregulin and amphiregulin proteins effectively inhibited endoplasmic reticulum stress and the subsequent induction of neuronal cell death. Therefore, the upregulation of the epidermal growth factor family members epiregulin and amphiregulin may play a critical role in preventing endoplasmic reticulum stress-induced cell death, thus providing a potential therapy for brain injury.</p></div

    Epiregulin (EPR) and amphiregulin (AR) inhibited endoplasmic reticulum stress in Neuro2a cells.

    No full text
    <p>Neuro2a cells were pre-incubated with (A) EPR or (B) AR for 1 h and then treated with tunicamycin (Tm) for 24 h. GRP78 and CHOP expression was detected via western blotting. Protein quantification is expressed as the mean ± standard error of 3 independent experiments. *p < 0.05 compared with the Tm-treated group.</p

    Epiregulin (EPR) and amphiregulin (AR) inhibited cell death in Neuro2a cells.

    No full text
    <p>The cells were pretreated with EPR (0.01, 0.03, 0.1, and 1 nM) and AR (0.001, 0.01, 0.03, 0.1, and 1 nM) for 1 h and subsequently treated according to the indicated conditions. (A) EPR reduced the release of lactate dehydrogenase (LDH) at 48 h after Tm (1 μg/mL) treatment. (B) AR reduced the release of LDH at 48 h after Tm (1 μg/mL) treatment. The LDH released into the medium was expressed as a percentage of the control value. The data represent the average of 4 independent experiments for each sample. *p < 0.05.</p

    Induction of epiregulin (EPR) and amphiregulin (AR) mRNA expression in primary glial cells following Tm treatment.

    No full text
    <p>Total RNA was isolated from cells exposed to Tm (3 μg/ml) for the indicated periods and subjected to RT-PCR. Data are presented as the means ± standard errors from 3 separate experiments. *p < 0.05 compared with the control.</p

    Induction of epiregulin (EPR) and amphiregulin (AR) mRNA expression in primary glial cells under hypoxic conditions.

    No full text
    <p>Total RNA was isolated from cells exposed to hypoxic conditions for the indicated time periods and subjected to RT-PCR. Data are presented as the means ± standard errors from 3 separate experiments. *p < 0.05 compared with the control.</p

    Induction of epiregulin (EPR) and amphiregulin (AR) mRNA expression in primary glial cells following lipopolysaccharide (LPS) treatment (time course and dose course).

    No full text
    <p>(A) Total RNA was isolated from cells exposed to LPS (1 μg/ml) for the indicated time periods and subjected to RT-PCR. (B) Total RNA was isolated from cells exposed to LPS (4 h) at the indicated concentrations and subjected to RT-PCR. Data are presented as the means ± standard errors from 3 separate experiments. *p < 0.05 compared with the control.</p

    Beta-Elemene Blocks Epithelial-Mesenchymal Transition in Human Breast Cancer Cell Line MCF-7 through Smad3-Mediated Down-Regulation of Nuclear Transcription Factors

    Get PDF
    <div><p>Epithelial-mesenchymal transition (EMT) is the first step required for breast cancer to initiate metastasis. However, the potential of drugs to block and reverse the EMT process are not well explored. In the present study, we investigated the inhibitory effect of beta-elemene (ELE), an active component of a natural plant-derived anti-neoplastic agent in an established EMT model mediated by transforming growth factor-beta1 (TGF-β1). We found that ELE (40 µg/ml ) blocked the TGF-β1-induced phenotypic transition in the human breast cancer cell line MCF-7. ELE was able to inhibit TGF-β1-mediated upregulation of mRNA and protein expression of nuclear transcription factors (SNAI1, SNAI2, TWIST and SIP1), potentially through decreasing the expression and phosphorylation of Smad3, a central protein mediating the TGF-β1 signalling pathway. These findings suggest a potential therapeutic benefit of ELE in treating basal-like breast cancer.</p> </div
    corecore