7,804 research outputs found
Sure Screening for Gaussian Graphical Models
We propose {graphical sure screening}, or GRASS, a very simple and
computationally-efficient screening procedure for recovering the structure of a
Gaussian graphical model in the high-dimensional setting. The GRASS estimate of
the conditional dependence graph is obtained by thresholding the elements of
the sample covariance matrix. The proposed approach possesses the sure
screening property: with very high probability, the GRASS estimated edge set
contains the true edge set. Furthermore, with high probability, the size of the
estimated edge set is controlled. We provide a choice of threshold for GRASS
that can control the expected false positive rate. We illustrate the
performance of GRASS in a simulation study and on a gene expression data set,
and show that in practice it performs quite competitively with more complex and
computationally-demanding techniques for graph estimation
Topological nodal states in circuit lattice
The search for artificial structure with tunable topological properties is an
interesting research direction of today's topological physics. Here, we
introduce a scheme to realize `topological semimetal states' with a
three-dimensional periodic inductor-capacitor (LC) circuit lattice, where the
topological nodal-line state and Weyl state can be achieved by tuning the
parameters of inductors and capacitors. A tight-binding-like model is derived
to analyze the topological properties of the LC circuit lattice. The key
characters of the topological states, such as the drumhead-like surface bands
for nodal-line state and the Fermi-arc-like surface bands for Weyl state, are
found in these systems. We also show that the Weyl points are stable with the
fabrication errors of electric devices.Comment: 4 figure
Ant colony optimization for scheduling walking beam reheating furnaces
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This paper presents a new mathematical model for the walking beam reheating furnace scheduling problem (WBRFSP) in an iron and steel plant, which allows the mixed package of hot and cold slabs and aims to minimize the energy consumption and increase the product quality. An ant colony optimization (ACO) algorithm is designed to solve this model. Simulation results based on the data derived from the field data of an iron and steel plant show the effectiveness of the proposed model and algorithm
Optimal Save-Then-Transmit Protocol for Energy Harvesting Wireless Transmitters
In this paper, the design of a wireless communication device relying
exclusively on energy harvesting is considered. Due to the inability of
rechargeable energy sources to charge and discharge at the same time, a
constraint we term the energy half-duplex constraint, two rechargeable energy
storage devices (ESDs) are assumed so that at any given time, there is always
one ESD being recharged. The energy harvesting rate is assumed to be a random
variable that is constant over the time interval of interest. A
save-then-transmit (ST) protocol is introduced, in which a fraction of time
{\rho} (dubbed the save-ratio) is devoted exclusively to energy harvesting,
with the remaining fraction 1 - {\rho} used for data transmission. The ratio of
the energy obtainable from an ESD to the energy harvested is termed the energy
storage efficiency, {\eta}. We address the practical case of the secondary ESD
being a battery with {\eta} < 1, and the main ESD being a super-capacitor with
{\eta} = 1. The optimal save-ratio that minimizes outage probability is
derived, from which some useful design guidelines are drawn. In addition, we
compare the outage performance of random power supply to that of constant power
supply over the Rayleigh fading channel. The diversity order with random power
is shown to be the same as that of constant power, but the performance gap can
be large. Furthermore, we extend the proposed ST protocol to wireless networks
with multiple transmitters. It is shown that the system-level outage
performance is critically dependent on the relationship between the number of
transmitters and the optimal save-ratio for single-channel outage minimization.
Numerical results are provided to validate our proposed study.Comment: This is the longer version of a paper to appear in IEEE Transactions
on Wireless Communication
Neutrino masses and Baryogenesis via Leptogenesis in the Exceptional Supersymmetric Standard Model
Neutrino oscillation experiments discover that (left-handed) neutrinos have masses much less than charged leptons and quarks in the Standard Model. One solution to the light
neutrino mass puzzle is the seesaw model where right-handed neutrinos are introduced with large Majorana masses. The heavy Majorana right-handed (RH) neutrinos lead to lepton
number violation in the early universe. They decay into either leptons or anti-leptons via Yukawa couplings. The CP asymmetries of these decays result in lepton number asymmetry in the universe. The lepton number asymmetry can be converted into baryon number asymmetry via the electroweak sphaleron process. This mechanism explains the
baryon asymmetry of universe problem and is called leptogenesis.
However, one finds that in order to generated enough baryon number in the universe, the reheating temperature, which is required to be of order of the lightest right-handed
neutrino mass, has to be higher than ∼ 10^9 GeV. The high reheating temperature would lead to the over-produced gravitinos in the universe, contrasting with the present observation. We investigate leptogenesis in the Exceptional Supersymmetric Standard Model. We find that the extra Yukawa couplings would enhance the CP asymmetries of the RH neutrino decay drastically. And the evolution of lepton/baryon asymmetries is described by Boltzmann Equations. Numerical calculation of the Boltzmann Equations shows that a correct amount of baryon number in the universe can be achieved when the lightest right-handed neutrino mass is ∼ 10^7 GeV, and then the gravitino-over-production problem is avoided
- …