22,379 research outputs found

    Periodic and Localized Solutions of the Long Wave-Short Wave Resonance Interaction Equation

    Get PDF
    In this paper, we investigate the (2+1) dimensional long wave-short wave resonance interaction (LSRI) equation and show that it possess the Painlev\'e property. We then solve the LSRI equation using Painlev\'e truncation approach through which we are able to construct solution in terms of three arbitrary functions. Utilizing the arbitrary functions present in the solution, we have generated a wide class of elliptic function periodic wave solutions and exponentially localized solutions such as dromions, multidromions, instantons, multi-instantons and bounded solitary wave solutions.Comment: 13 pages, 6 figure

    Coupled KdV equations derived from atmospherical dynamics

    Full text link
    Some types of coupled Korteweg de-Vries (KdV) equations are derived from an atmospheric dynamical system. In the derivation procedure, an unreasonable yy-average trick (which is usually adopted in literature) is removed. The derived models are classified via Painlev\'e test. Three types of τ\tau-function solutions and multiple soliton solutions of the models are explicitly given by means of the exact solutions of the usual KdV equation. It is also interesting that for a non-Painlev\'e integrable coupled KdV system there may be multiple soliton solutions.Comment: 19 pages, 2 figure