41,609 research outputs found

    Analytical study of tunneling times in flat histogram Monte Carlo

    Full text link
    We present a model for the dynamics in energy space of multicanonical simulation methods that lends itself to a rather complete analytic characterization. The dynamics is completely determined by the density of states. In the \pm J 2D spin glass the transitions between the ground state level and the first excited one control the long time dynamics. We are able to calculate the distribution of tunneling times and relate it to the equilibration time of a starting probability distribution. In this model, and possibly in any model in which entering and exiting regions with low density of states are the slowest processes in the simulations, tunneling time can be much larger (by a factor of O(N)) than the equilibration time of the probability distribution. We find that these features also hold for the energy projection of single spin flip dynamics.Comment: 7 pages, 4 figures, published in Europhysics Letters (2005

    Large time behavior for vortex evolution in the half-plane

    Full text link
    In this article we study the long-time behavior of incompressible ideal flow in a half plane from the point of view of vortex scattering. Our main result is that certain asymptotic states for half-plane vortex dynamics decompose naturally into a nonlinear superposition of soliton-like states. Our approach is to combine techniques developed in the study of vortex confinement with weak convergence tools in order to study the asymptotic behavior of a self-similar rescaling of a solution of the incompressible 2D Euler equations on a half plane with compactly supported, nonnegative initial vorticity.Comment: 30 pages, no figure
    • …
    corecore