276 research outputs found

    Fast Algorithms for Parameterized Problems with Relaxed Disjointness Constraints

    Full text link
    In parameterized complexity, it is a natural idea to consider different generalizations of classic problems. Usually, such generalization are obtained by introducing a "relaxation" variable, where the original problem corresponds to setting this variable to a constant value. For instance, the problem of packing sets of size at most pp into a given universe generalizes the Maximum Matching problem, which is recovered by taking p=2p=2. Most often, the complexity of the problem increases with the relaxation variable, but very recently Abasi et al. have given a surprising example of a problem --- rr-Simple kk-Path --- that can be solved by a randomized algorithm with running time O(2O(klogrr))O^*(2^{O(k \frac{\log r}{r})}). That is, the complexity of the problem decreases with rr. In this paper we pursue further the direction sketched by Abasi et al. Our main contribution is a derandomization tool that provides a deterministic counterpart of the main technical result of Abasi et al.: the O(2O(klogrr))O^*(2^{O(k \frac{\log r}{r})}) algorithm for (r,k)(r,k)-Monomial Detection, which is the problem of finding a monomial of total degree kk and individual degrees at most rr in a polynomial given as an arithmetic circuit. Our technique works for a large class of circuits, and in particular it can be used to derandomize the result of Abasi et al. for rr-Simple kk-Path. On our way to this result we introduce the notion of representative sets for multisets, which may be of independent interest. Finally, we give two more examples of problems that were already studied in the literature, where the same relaxation phenomenon happens. The first one is a natural relaxation of the Set Packing problem, where we allow the packed sets to overlap at each element at most rr times. The second one is Degree Bounded Spanning Tree, where we seek for a spanning tree of the graph with a small maximum degree

    Bisection of Bounded Treewidth Graphs by Convolutions

    Get PDF
    In the Bisection problem, we are given as input an edge-weighted graph G. The task is to find a partition of V(G) into two parts A and B such that ||A| - |B|| <= 1 and the sum of the weights of the edges with one endpoint in A and the other in B is minimized. We show that the complexity of the Bisection problem on trees, and more generally on graphs of bounded treewidth, is intimately linked to the (min, +)-Convolution problem. Here the input consists of two sequences (a[i])^{n-1}_{i = 0} and (b[i])^{n-1}_{i = 0}, the task is to compute the sequence (c[i])^{n-1}_{i = 0}, where c[k] = min_{i=0,...,k}(a[i] + b[k - i]). In particular, we prove that if (min, +)-Convolution can be solved in O(tau(n)) time, then Bisection of graphs of treewidth t can be solved in time O(8^t t^{O(1)} log n * tau(n)), assuming a tree decomposition of width t is provided as input. Plugging in the naive O(n^2) time algorithm for (min, +)-Convolution yields a O(8^t t^{O(1)} n^2 log n) time algorithm for Bisection. This improves over the (dependence on n of the) O(2^t n^3) time algorithm of Jansen et al. [SICOMP 2005] at the cost of a worse dependence on t. "Conversely", we show that if Bisection can be solved in time O(beta(n)) on edge weighted trees, then (min, +)-Convolution can be solved in O(beta(n)) time as well. Thus, obtaining a sub-quadratic algorithm for Bisection on trees is extremely challenging, and could even be impossible. On the other hand, for unweighted graphs of treewidth t, by making use of a recent algorithm for Bounded Difference (min, +)-Convolution of Chan and Lewenstein [STOC 2015], we obtain a sub-quadratic algorithm for Bisection with running time O(8^t t^{O(1)} n^{1.864} log n)

    A Linear Time Parameterized Algorithm for Node Unique Label Cover

    Get PDF
    The optimization version of the Unique Label Cover problem is at the heart of the Unique Games Conjecture which has played an important role in the proof of several tight inapproximability results. In recent years, this problem has been also studied extensively from the point of view of parameterized complexity. Cygan et al. [FOCS 2012] proved that this problem is fixed-parameter tractable (FPT) and Wahlstr\"om [SODA 2014] gave an FPT algorithm with an improved parameter dependence. Subsequently, Iwata, Wahlstr\"om and Yoshida [2014] proved that the edge version of Unique Label Cover can be solved in linear FPT-time. That is, there is an FPT algorithm whose dependence on the input-size is linear. However, such an algorithm for the node version of the problem was left as an open problem. In this paper, we resolve this question by presenting the first linear-time FPT algorithm for Node Unique Label Cover

    Bidimensionality and Geometric Graphs

    Full text link
    In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and Fiala [J. Algorithms 2004], respectively. We proceed to show that our approach can not be extended in its full generality to more general classes of geometric graphs, such as intersection graphs of unit balls in R^d, d >= 3. Specifically we prove that Feedback Vertex Set on unit-ball graphs in R^3 neither admits PTASs unless P=NP, nor subexponential time algorithms unless the Exponential Time Hypothesis fails. Additionally, we show that the decomposition theorems which our approach is based on fail for disk graphs and that therefore any extension of our results to disk graphs would require new algorithmic ideas. On the other hand, we prove that our EPTASs and subexponential time algorithms for Vertex Cover and Connected Vertex Cover carry over both to disk graphs and to unit-ball graphs in R^d for every fixed d
    corecore