3,404 research outputs found

    Instance-level Facial Attributes Transfer with Geometry-Aware Flow

    Full text link
    We address the problem of instance-level facial attribute transfer without paired training data, e.g. faithfully transferring the exact mustache from a source face to a target face. This is a more challenging task than the conventional semantic-level attribute transfer, which only preserves the generic attribute style instead of instance-level traits. We propose the use of geometry-aware flow, which serves as a well-suited representation for modeling the transformation between instance-level facial attributes. Specifically, we leverage the facial landmarks as the geometric guidance to learn the differentiable flows automatically, despite of the large pose gap existed. Geometry-aware flow is able to warp the source face attribute into the target face context and generate a warp-and-blend result. To compensate for the potential appearance gap between source and target faces, we propose a hallucination sub-network that produces an appearance residual to further refine the warp-and-blend result. Finally, a cycle-consistency framework consisting of both attribute transfer module and attribute removal module is designed, so that abundant unpaired face images can be used as training data. Extensive evaluations validate the capability of our approach in transferring instance-level facial attributes faithfully across large pose and appearance gaps. Thanks to the flow representation, our approach can readily be applied to generate realistic details on high-resolution images.Comment: To appear in AAAI 2019. Code and models are available at: https://github.com/wdyin/GeoGA

    Deep Learning Face Attributes in the Wild

    Full text link
    Predicting face attributes in the wild is challenging due to complex face variations. We propose a novel deep learning framework for attribute prediction in the wild. It cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by massive general object categories for face localization, while ANet is pre-trained by massive face identities for attribute prediction. This framework not only outperforms the state-of-the-art with a large margin, but also reveals valuable facts on learning face representation. (1) It shows how the performances of face localization (LNet) and attribute prediction (ANet) can be improved by different pre-training strategies. (2) It reveals that although the filters of LNet are fine-tuned only with image-level attribute tags, their response maps over entire images have strong indication of face locations. This fact enables training LNet for face localization with only image-level annotations, but without face bounding boxes or landmarks, which are required by all attribute recognition works. (3) It also demonstrates that the high-level hidden neurons of ANet automatically discover semantic concepts after pre-training with massive face identities, and such concepts are significantly enriched after fine-tuning with attribute tags. Each attribute can be well explained with a sparse linear combination of these concepts.Comment: To appear in International Conference on Computer Vision (ICCV) 201

    Talking Face Generation by Adversarially Disentangled Audio-Visual Representation

    Full text link
    Talking face generation aims to synthesize a sequence of face images that correspond to a clip of speech. This is a challenging task because face appearance variation and semantics of speech are coupled together in the subtle movements of the talking face regions. Existing works either construct specific face appearance model on specific subjects or model the transformation between lip motion and speech. In this work, we integrate both aspects and enable arbitrary-subject talking face generation by learning disentangled audio-visual representation. We find that the talking face sequence is actually a composition of both subject-related information and speech-related information. These two spaces are then explicitly disentangled through a novel associative-and-adversarial training process. This disentangled representation has an advantage where both audio and video can serve as inputs for generation. Extensive experiments show that the proposed approach generates realistic talking face sequences on arbitrary subjects with much clearer lip motion patterns than previous work. We also demonstrate the learned audio-visual representation is extremely useful for the tasks of automatic lip reading and audio-video retrieval.Comment: AAAI Conference on Artificial Intelligence (AAAI 2019) Oral Presentation. Code, models, and video results are available on our webpage: https://liuziwei7.github.io/projects/TalkingFace.htm

    Mix-and-Match Tuning for Self-Supervised Semantic Segmentation

    Full text link
    Deep convolutional networks for semantic image segmentation typically require large-scale labeled data, e.g. ImageNet and MS COCO, for network pre-training. To reduce annotation efforts, self-supervised semantic segmentation is recently proposed to pre-train a network without any human-provided labels. The key of this new form of learning is to design a proxy task (e.g. image colorization), from which a discriminative loss can be formulated on unlabeled data. Many proxy tasks, however, lack the critical supervision signals that could induce discriminative representation for the target image segmentation task. Thus self-supervision's performance is still far from that of supervised pre-training. In this study, we overcome this limitation by incorporating a "mix-and-match" (M&M) tuning stage in the self-supervision pipeline. The proposed approach is readily pluggable to many self-supervision methods and does not use more annotated samples than the original process. Yet, it is capable of boosting the performance of target image segmentation task to surpass fully-supervised pre-trained counterpart. The improvement is made possible by better harnessing the limited pixel-wise annotations in the target dataset. Specifically, we first introduce the "mix" stage, which sparsely samples and mixes patches from the target set to reflect rich and diverse local patch statistics of target images. A "match" stage then forms a class-wise connected graph, which can be used to derive a strong triplet-based discriminative loss for fine-tuning the network. Our paradigm follows the standard practice in existing self-supervised studies and no extra data or label is required. With the proposed M&M approach, for the first time, a self-supervision method can achieve comparable or even better performance compared to its ImageNet pre-trained counterpart on both PASCAL VOC2012 dataset and CityScapes dataset.Comment: To appear in AAAI 2018 as a spotlight paper. More details at the project page: http://mmlab.ie.cuhk.edu.hk/projects/M%26M

    Distributed Estimation and Inference with Statistical Guarantees

    Full text link
    This paper studies hypothesis testing and parameter estimation in the context of the divide and conquer algorithm. In a unified likelihood based framework, we propose new test statistics and point estimators obtained by aggregating various statistics from kk subsamples of size n/kn/k, where nn is the sample size. In both low dimensional and high dimensional settings, we address the important question of how to choose kk as nn grows large, providing a theoretical upper bound on kk such that the information loss due to the divide and conquer algorithm is negligible. In other words, the resulting estimators have the same inferential efficiencies and estimation rates as a practically infeasible oracle with access to the full sample. Thorough numerical results are provided to back up the theory
    corecore