611 research outputs found
On Continuous-Time Gaussian Channels
A continuous-time white Gaussian channel can be formulated using a white
Gaussian noise, and a conventional way for examining such a channel is the
sampling approach based on the Shannon-Nyquist sampling theorem, where the
original continuous-time channel is converted to an equivalent discrete-time
channel, to which a great variety of established tools and methodology can be
applied. However, one of the key issues of this scheme is that continuous-time
feedback and memory cannot be incorporated into the channel model. It turns out
that this issue can be circumvented by considering the Brownian motion
formulation of a continuous-time white Gaussian channel. Nevertheless, as
opposed to the white Gaussian noise formulation, a link that establishes the
information-theoretic connection between a continuous-time channel under the
Brownian motion formulation and its discrete-time counterparts has long been
missing. This paper is to fill this gap by establishing causality-preserving
connections between continuous-time Gaussian feedback/memory channels and their
associated discrete-time versions in the forms of sampling and approximation
theorems, which we believe will play important roles in the long run for
further developing continuous-time information theory.
As an immediate application of the approximation theorem, we propose the
so-called approximation approach to examine continuous-time white Gaussian
channels in the point-to-point or multi-user setting. It turns out that the
approximation approach, complemented by relevant tools from stochastic
calculus, can enhance our understanding of continuous-time Gaussian channels in
terms of giving alternative and strengthened interpretation to some long-held
folklore, recovering "long known" results from new perspectives, and rigorously
establishing new results predicted by the intuition that the approximation
approach carries
Synchronization of dissipative dynamical systems driven by non-Gaussian Lévy noises
Dynamical systems driven by Gaussian noises have been considered extensively in modeling, simulation, and theory. However, complex systems in engineering and science are often subject to non-Gaussian fluctuations or uncertainties. A coupled dynamical system under a class of Lévy noises is considered. After discussing cocycle property, stationary orbits, and random attractors, a synchronization phenomenon is shown to occur, when the drift terms of the coupled system satisfy certain dissipativity and integrability conditions. The synchronization result implies that coupled dynamical systems share a dynamical feature in some asymptotic sense
Blind Image Deblurring via Reweighted Graph Total Variation
Blind image deblurring, i.e., deblurring without knowledge of the blur
kernel, is a highly ill-posed problem. The problem can be solved in two parts:
i) estimate a blur kernel from the blurry image, and ii) given estimated blur
kernel, de-convolve blurry input to restore the target image. In this paper, by
interpreting an image patch as a signal on a weighted graph, we first argue
that a skeleton image---a proxy that retains the strong gradients of the target
but smooths out the details---can be used to accurately estimate the blur
kernel and has a unique bi-modal edge weight distribution. We then design a
reweighted graph total variation (RGTV) prior that can efficiently promote
bi-modal edge weight distribution given a blurry patch. However, minimizing a
blind image deblurring objective with RGTV results in a non-convex
non-differentiable optimization problem. We propose a fast algorithm that
solves for the skeleton image and the blur kernel alternately. Finally with the
computed blur kernel, recent non-blind image deblurring algorithms can be
applied to restore the target image. Experimental results show that our
algorithm can robustly estimate the blur kernel with large kernel size, and the
reconstructed sharp image is competitive against the state-of-the-art methods.Comment: 5 pages, submitted to IEEE International Conference on Acoustics,
Speech and Signal Processing, Calgary, Alberta, Canada, April, 201
- …