505 research outputs found

    Detection of CI line emission from the detached CO shell of the AGB star R Sculptoris

    Get PDF
    Stars on the asymptotic giant branch (AGB) lose substantial amounts of matter, to the extent that they are important for the chemical evolution of, and dust production in, the universe. The mass loss is believed to increase gradually with age on the AGB, but it may also occur in the form of bursts, possibly related to the thermal pulsing phenomenon. Detached, geometrically thin, CO shells around carbon stars are good signposts of brief and intense mass ejection. We aim to put further constraints on the physical properties of detached CO shells around AGB stars. The photodissociation of CO and other carbon-bearing species in the shells leads to the possibility of detecting lines from neutral carbon. We have therefore searched for the CI(^3P_1-\,^3P_0) line at 492 GHz towards two carbon stars, S Sct and R Scl, with detached CO shells of different ages, about 8000 and 2300 years, respectively. The CI(^3P_1-\,^3P_0) line was detected towards R Scl. The line intensity is dominated by emission from the detached shell. The detection is at a level consistent with the neutral carbon coming from the full photodissociation of all species except CO, and with only limited photoionisation of carbon. The best fit to the observed 12^{12}CO and 13^{13}CO line intensities, assuming a homogeneous shell, is obtained for a shell mass of about 0.002 MM_\odot, a temperature of about 100 K, and a CO abundance with respect to H2_2 of 103^{-3}. The estimated CI/CO abundance ratio is about 0.3 for the best-fit model. However, a number of arguments point in the direction of a clumpy medium, and a viable interpretation of the data within such a context is provided

    Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates

    Get PDF
    Optical properties of light absorbing carbon (LAC) aggregates encapsulated in a shell of sulfate are computed for realistic model geometries based on field measurements. Computations are performed for wavelengths from the UV-C to the mid-IR. Both climate- and remote sensing-relevant optical properties are considered. The results are compared to commonly used simplified model geometries, none of which gives a realistic representation of the distribution of the LAC mass within the host material and, as a consequence, fail to predict the optical properties accurately. A new core-gray shell model is introduced, which accurately reproduces the size- and wavelength dependence of the integrated and differential optical properties

    First detection of methanol towards a post-AGB object, HD101584

    Get PDF
    The circumstellar environments of objects on the asymptotic giant branch and beyond are rich in molecular species. Nevertheless, methanol has never been detected in such an object, and is therefore often taken as a clear signpost for a young stellar object. However, we report the first detection of CH3OH in a post-AGB object, HD101584, using ALMA. Its emission, together with emissions from CO, SiO, SO, CS, and H2CO, comes from two extreme velocity spots on either side of the object where a high-velocity outflow appears to interact with the surrounding medium. We have derived molecular abundances, and propose that the detected molecular species are the effect of a post-shock chemistry where circumstellar grains play a role. We further provide evidence that HD101584 was a low-mass, M-type AGB star

    Design trade-offs in feed systems for ultra-wideband VLBI observations

    Get PDF
    Due to the advanced capability of today’s ultra-wideband feed systems and low-noise amplifiers, interesting upgrades for future VLBI receiver and tele- scope design should be considered. Multiple input pa- rameters need to be taken into account for optimal sensitivity and applications of the future astronomical and geodetic observational systems. In this paper we present an overview of some trade-offs for wideband systems between SEFD, bandwidth and telescope re- flector optics. We evaluate receiver bandwidths from 3.5:1 to 10.3:1 bandwidth within the frequency range 1.5-24 GHz in different configurations. Due to poten- tial RFI-pollution of the lower frequencies we present potential feed upgrades for the most common reflector geometries ofVGOS and EVN telescopes that mitigate this problem. The results of this work is relevant for fu- ture VLBI stations and telescope design in general. Keyword

    Constraints on black-hole charges with the 2017 EHT observations of M87∗

    Get PDF
    Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87∗ shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87∗ is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes

    Utilization of convolutional neural networks for HI source finding: Team FORSKA-Sweden approach to SKA Data Challenge 2

    Get PDF
    Context. The future deployment of the Square Kilometer Array (SKA) will lead to a massive influx of astronomical data and the automatic detection and characterization of sources will therefore prove crucial in utilizing its full potential. Aims. We examine how existing astronomical knowledge and tools can be utilized in a machine learning-based pipeline to find 3D spectral line sources. Methods. We present a source-finding pipeline designed to detect 21-cm emission from galaxies that provides the second-best submission of SKA Science Data Challenge 2. The first pipeline step was galaxy segmentation, which consisted of a convolutional neural network (CNN) that took an HI cube as input and output a binary mask to separate galaxy and background voxels. The CNN was trained to output a target mask algorithmically constructed from the underlying source catalog of the simulation. For each source in the catalog, its listed properties were used to mask the voxels in its neighborhood that capture plausible signal distributions of the galaxy. To make the training more efficient, regions containing galaxies were oversampled compared to the background regions. In the subsequent source characterization step, the final source catalog was generated by the merging and dilation modules of the existing source-finding software SOFIA, and some complementary calculations, with the CNN-generated mask as input. To cope with the large size of HI cubes while also allowing for deployment on various computational resources, the pipeline was implemented with flexible and configurable memory usage. Results. We show that once the segmentation CNN has been trained, the performance can be fine-Tuned by adjusting the parameters involved in producing the catalog from the mask. Using different sets of parameter values offers a trade-off between completeness and reliability

    Phenomenology as a resource for patients

    Get PDF
    Patient support tools have drawn on a variety of disciplines, including psychotherapy, social psychology, and social care. One discipline that has not so far been used to support patients is philosophy. This paper proposes that a particular philosophical approach, phenomenology, could prove useful for patients, giving them tools to reflect on and expand their understanding of their illness. I present a framework for a resource that could help patients to philosophically examine their illness, its impact on their life, and its meaning. I explain the need for such a resource, provide philosophical grounding for it, and outline the epistemic and existential gains philosophy offers. Illness often begins as an intrusion on one's life but with time becomes a way of being. I argue that this transition impacts on core human features such as the experience of space and time, human abilities, and adaptability. It therefore requires philosophical analysis and response. The paper uses ideas from Husserl and Merleau-Ponty to present such a response in the form of a phenomenological toolkit for patients. The toolkit includes viewing illness as a form of phenomenological reduction, thematizing illness, and examining illness as altering the ill person's being in the world. I suggest that this toolkit could be offered to patients as a workshop, using phenomenological concepts, texts, and film clips to reflect on illness. I conclude by arguing that examining illness as a limit case of embodied existence deepens our understanding of phenomenology.© The Author 2012. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved

    Ultra-wideband feed systems for the EVN and SKA - evaluated for VGOS

    Get PDF
    The design of the Square Kilometre Array (SKA) project for radio astronomy is now materializing at a rapid speed; the EU Horizon 2020 RadioNet project BRoad-bAND (BRAND) has the ambition to deliver a decade bandwidth receiver for EVN. The ultra-wideband quad-ridge flared horn (QRFH) feed systems developed for these projects show good performance within the geodetic VLBI Global Observing System (VGOS) frame due to the overlapping frequency bands and reflector geometries. We estimate, through simulation, system equivalent flux density (SEFD) of the two feed systems in the VGOS reflector and compare the it to the existing system installed on one of the 13.2 m diameter reflectors of the Onsala twin telescope (OTT). The two frequency bands analyzed cover 1.5−15.5 GHz and 4.6−24 GHz. Both systems show SEFD better than 1000 Jy over large parts of resp. frequency band - comparable to the 3−18 GHz feed systems. For the SKA QRFH over 4.6−24 GHz, the water vapor absorption line at 22 GHz is within the operational band, therefore we study the application of water-vapor radiometry in line-of-sight of the telescope

    A detailed view of the gas shell around R Sculptoris with ALMA

    Get PDF
    Context. During the asymptotic giant branch (AGB) phase, stars undergo thermal pulses - short-lived phases of explosive helium burning in a shell around the stellar core. Thermal pulses lead to the formation and mixing-up of new elements to the stellar surface. They are hence fundamental to the chemical evolution of the star and its circumstellar envelope. A further consequence of thermal pulses is the formation of detached shells of gas and dust around the star, several of which have been observed around carbon-rich AGB stars. Aims. We aim to determine the physical properties of the detached gas shell around R Sculptoris, in particular the shell mass and temperature, and to constrain the evolution of the mass-loss rate during and after a thermal pulse. Methods. We analyse 12CO(1-0), 12CO(2-1), and 12CO(3-2) emission, observed with the Atacama Large Millimeter/submillimeter Array (ALMA) during Cycle 0 and complemented by single-dish observations. The spatial resolution of the ALMA data allows us to separate the detached shell emission from the extended emission inside the shell. We perform radiative transfer modelling of both components to determine the shell properties and the post-pulse mass-loss properties. Results. The ALMA data show a gas shell with a radius of 19″.5 expanding at 14.3 km s-1. The different scales probed by the ALMA Cycle 0 array show that the shell must be entirely filled with gas, contrary to the idea of a detached shell. The comparison to single-dish spectra and radiative transfer modelling confirms this. We derive a shell mass of 4.5 × 10-3 M⊙ with a temperature of 50 K. Typical timescales for thermal pulses imply a pulse mass-loss rate of 2.3 × 10-5 M⊙ yr-1. For the post-pulse mass-loss rate, we find evidence for a gradual decline of the mass-loss rate, with an average value of 1.6 × 10-5 M⊙ yr-1. The total amount of mass lost since the last thermal pulse is 0.03 M⊙, a factor four higher compared to classical models, with a sharp decline in mass-loss rate immediately after the pulse. Conclusions. We find that the mass-loss rate after a thermal pulse has to decline more slowly than generally expected from models of thermal pulses. This may cause the star to lose significantly more mass during a thermal pulse cycle, which affects the lifetime on the AGB and the chemical evolution of the star, its circumstellar envelope, and the interstellar medium
    corecore