2 research outputs found
Electrode Reaction Mechanism of Ag<sub>2</sub>VO<sub>2</sub>PO<sub>4</sub> Cathode
The high capacity of primary lithium-ion
cathode Ag<sub>2</sub>VO<sub>2</sub>PO<sub>4</sub> is facilitated
by both displacement
and insertion reaction mechanisms. Whether the Ag extrusion (specifically,
Ag reduction with Ag metal displaced from the host crystal) and V
reduction are sequential or concurrent remains unclear. A microscopic
description of the reaction mechanism is required for developing design
rules for new multimechanism cathodes, combining both displacement
and insertion reactions. However, the amorphization of Ag<sub>2</sub>VO<sub>2</sub>PO<sub>4</sub> during lithiation makes the investigation
of the electrode reaction mechanism difficult with conventional characterization
tools. For addressing this issue, a combination of local probes of
pair-distribution function and X-ray spectroscopy were used to obtain
a description of the discharge reaction. We determine that the initial
reaction is dominated by silver extrusion with vanadium playing a
supporting role. Once sufficient Ag has been displaced, the residual
Ag<sup>+</sup> in the host can no longer stabilize the host structure
and V–O environment (i.e., onset of amorphization). After amorphization,
silver extrusion continues but the vanadium reduction dominates the
reaction. As a result, the crossover from primarily silver reduction
displacement to vanadium reduction is facilitated by the amorphization
that makes vanadium reduction increasingly more favorable
Electrochemical Performance of Nanosized Disordered LiVOPO<sub>4</sub>
ε-LiVOPO<sub>4</sub> is a promising multielectron cathode
material for Li-ion batteries that can accommodate two electrons per
vanadium, leading to higher energy densities. However, poor electronic
conductivity and low lithium ion diffusivity currently result in low
rate capability and poor cycle life. To enhance the electrochemical
performance of ε-LiVOPO<sub>4</sub>, in this work, we optimized
its solid-state synthesis route using in situ synchrotron X-ray diffraction
and applied a combination of high-energy ball-milling with electronically
and ionically conductive coatings aiming to improve bulk and surface
Li diffusion. We show that high-energy ball-milling, while reducing
the particle size also introduces structural disorder, as evidenced
by <sup>7</sup>Li and <sup>31</sup>P NMR and X-ray absorption spectroscopy.
We also show that a combination of electronically and ionically conductive
coatings helps to utilize close to theoretical capacity for ε-LiVOPO<sub>4</sub> at C/50 (1 C = 153 mA h g<sup>–1</sup>) and to enhance
rate performance and capacity retention. The optimized ε-LiVOPO<sub>4</sub>/Li<sub>3</sub>VO<sub>4</sub>/acetylene black composite yields
the high cycling capacity of 250 mA h g<sup>–1</sup> at C/5
for over 70 cycles