79,347 research outputs found
Toward a Deterministic Model of Planetary Formation IV: Effects of Type-I Migration
In a further development of a deterministic planet-formation model (Ida & Lin
2004), we consider the effect of type-I migration of protoplanetary embryos due
to their tidal interaction with their nascent disks. During the early embedded
phase of protostellar disks, although embryos rapidly emerge in regions
interior to the ice line, uninhibited type-I migration leads to their efficient
self-clearing. But, embryos continue to form from residual planetesimals at
increasingly large radii, repeatedly migrate inward, and provide a main channel
of heavy element accretion onto their host stars. During the advanced stages of
disk evolution (a few Myr), the gas surface density declines to values
comparable to or smaller than that of the minimum mass nebula model and type-I
migration is no longer an effective disruption mechanism for mars-mass embryos.
Over wide ranges of initial disk surface densities and type-I migration
efficiency, the surviving population of embryos interior to the ice line has a
total mass several times that of the Earth. With this reservoir, there is an
adequate inventory of residual embryos to subsequently assemble into rocky
planets similar to those around the Sun. But, the onset of efficient gas
accretion requires the emergence and retention of cores, more massive than a
few M_earth, prior to the severe depletion of the disk gas. The formation
probability of gas giant planets and hence the predicted mass and semimajor
axis distributions of extrasolar gas giants are sensitively determined by the
strength of type-I migration. We suggest that the observed fraction of
solar-type stars with gas giant planets can be reproduced only if the actual
type-I migration time scale is an order of magnitude longer than that deduced
from linear theories.Comment: 32 pages, 8 figures, 1 table, accepted for publication in Ap
On the Survival of Short-Period Terrestrial Planets
The currently feasible method of detection of Earth-mass planets is transit
photometry, with detection probability decreasing with a planet's distance from
the star. The existence or otherwise of short-period terrestrial planets will
tell us much about the planet formation process, and such planets are likely to
be detected first if they exist. Tidal forces are intense for short-period
planets, and result in decay of the orbit on a timescale which depends on
properties of the star as long as the orbit is circular. However, if an
eccentric companion planet exists, orbital eccentricity () is induced and
the decay timescale depends on properties of the short-period planet, reducing
by a factor of order if it is terrestrial. Here we examine the
influence companion planets have on the tidal and dynamical evolution of
short-period planets with terrestrial structure, and show that the relativistic
potential of the star is fundamental to their survival.Comment: 13 pages, 2 figures, accepted for publication in Ap
On the Tidal Dissipation of Obliquity
We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an
initial random orientation of obliquity and parameters relevant to the observed
population, the obliquity of hot Jupiters does not evolve to purely aligned
systems. In fact, the obliquity evolves to either prograde, retrograde or
90^{o} orbits where the torque due to tidal perturbations vanishes. This
distribution is incompatible with observations which show that hot jupiters
around cool stars are generally aligned. This calls into question the viability
of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters
around cool stars.Comment: 6 pages, 4 figures, accepted at ApJ
Thermal instabilities in protogalactic clouds
The means by which a protogalaxy can fragment to form the first generation of stars and globular clusters remains an important problem in astrophysics. Gravitational instabilities grow on timescales too long to drive fragmentation before the background density grows by many orders of magnitude (see Murray and Lin 1989a, and references therein). Thermal instability provides a much more likely mechanism. After its initial collapse, a protogalactic cloud is expected to be shock heated to its virial temperature approx. 10(exp 6) K. Cooling by H and He+ below 10(exp 6) K has a negative slope, so that the cloud is subject to strong thermal instabilities. Density enhancements may then grow rapidly, fragmenting the protogalaxy as it cools to lower temperatures. The role of dynamical effects upon the growth of perturbations is considered here. The method used is similar to that used in Murray and Lin (1989a; see also the Erratum to appear September 15), which examined the growth of thermal instabilities with a one-dimensional Lagrangian hydrodynamics code, written for spherical symmetry. Perturbed regions therefore take the form of shells. The dynamical variables are integrated explicitly, while the temperature, ionization fraction, and molecular fraction are integrated implicitly, and account is taken for non-equilibrium values of these quantities
Are the Kepler Near-Resonance Planet Pairs due to Tidal Dissipation?
The multiple-planet systems discovered by the Kepler mission show an excess
of planet pairs with period ratios just wide of exact commensurability for
first-order resonances like 2:1 and 3:2. In principle, these planet pairs could
have both resonance angles associated with the resonance librating if the
orbital eccentricities are sufficiently small, because the width of first-order
resonances diverges in the limit of vanishingly small eccentricity. We consider
a widely-held scenario in which pairs of planets were captured into first-order
resonances by migration due to planet-disk interactions, and subsequently
became detached from the resonances, due to tidal dissipation in the planets.
In the context of this scenario, we find a constraint on the ratio of the
planet's tidal dissipation function and Love number that implies that some of
the Kepler planets are likely solid. However, tides are not strong enough to
move many of the planet pairs to the observed separations, suggesting that
additional dissipative processes are at play.Comment: 20 pages, including 7 figures; accepted for publication in Ap
Critical Protoplanetary Core Masses in Protoplanetary Disks and the Formation of Short-Period Giant Planets
We study a solid protoplanetary core of 1-10 earth masses migrating through a
disk. We suppose the core luminosity is generated as a result of planetesimal
accretion and calculate the structure of the gaseous envelope assuming
equilibrium. This is a good approximation when the core mass is less than the
critical value, M_{crit}, above which rapid gas accretion begins. We model the
structure of the protoplanetary nebula as an accretion disk with constant
\alpha. We present analytic fits for the steady state relation between disk
surface density and mass accretion rate as a function of radius r. We calculate
M_{crit} as a function of r, gas accretion rate through the disk, and
planetesimal accretion rate onto the core \dot{M}. For a fixed \dot{M},
M_{crit} increases inwards, and it decreases with \dot{M}. We find that \dot{M}
onto cores migrating inwards in a time 10^3-10^5 yr at 1 AU is sufficient to
prevent the attainment of M_{crit} during the migration process. Only at small
radii where planetesimals no longer exist can M_{crit} be attained. At small
radii, the runaway gas accretion phase may become longer than the disk lifetime
if the core mass is too small. However, massive cores can be built-up through
the merger of additional incoming cores on a timescale shorter than for in situ
formation. Therefore, feeding zone depletion in the neighborhood of a fixed
orbit may be avoided. Accordingly, we suggest that giant planets may begin to
form early in the life of the protostellar disk at small radii, on a timescale
that may be significantly shorter than for in situ formation. (abridged)Comment: 24 pages (including 9 figures), LaTeX, uses emulateapj.sty, to be
published in ApJ, also available at http://www.ucolick.org/~ct/home.htm
Eccentricity Evolution of Extrasolar Multiple Planetary Systems due to the Depletion of Nascent Protostellar Disks
Most extrasolar planets are observed to have eccentricities much larger than
those in the solar system. Some of these planets have sibling planets, with
comparable masses, orbiting around the same host stars. In these multiple
planetary systems, eccentricity is modulated by the planets' mutual secular
interaction as a consequence of angular momentum exchange between them. For
mature planets, the eigenfrequencies of this modulation are determined by their
mass and semi-major axis ratios. But, prior to the disk depletion, self gravity
of the planets' nascent disks dominates the precession eigenfrequencies. We
examine here the initial evolution of young planets' eccentricity due to the
apsidal libration or circulation induced by both the secular interaction
between them and the self gravity of their nascent disks. We show that as the
latter effect declines adiabatically with disk depletion, the modulation
amplitude of the planets' relative phase of periapse is approximately invariant
despite the time-asymmetrical exchange of angular momentum between planets.
However, as the young planets' orbits pass through a state of secular
resonance, their mean eccentricities undergo systematic quantitative changes.
For applications, we analyze the eccentricity evolution of planets around
Upsilon Andromedae and HD168443 during the epoch of protostellar disk
depletion. We find that the disk depletion can change the planets' eccentricity
ratio. However, the relatively large amplitude of the planets' eccentricity
cannot be excited if all the planets had small initial eccentricities.Comment: 50 pages including 11 figures, submitted to Ap
Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets
Extrasolar planets found with radial velocity surveys have masses ranging
from several Earth to several Jupiter masses. While mass accretion onto
protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a
global depletion of gas, such a mechanism is unlikely to have stalled the
growth of some known planetary systems which contain relatively low-mass and
close-in planets along with more massive and longer period companions. Here, we
suggest a potential solution for this conundrum. In general, supersonic infall
of surrounding gas onto a protoplanet is only possible interior to both of its
Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche
radii are equal to the disk thickness. Above this mass, the protoplanets' tidal
perturbation induces the formation of a gap. Although the disk gas may continue
to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe
is quenched. Using two different schemes, we present the results of numerical
simulations and analysis to show that the accretion rate increases rapidly with
the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk
thickness. In regions with low geometric aspect ratios, gas accretion is
quenched with relatively low protoplanetary masses. This effect is important
for determining the gas-giant planets' mass function, the distribution of their
masses within multiple planet systems around solar type stars, and for
suppressing the emergence of gas-giants around low mass stars
- âŠ